首页 | 本学科首页   官方微博 | 高级检索  
     

基于DDPG算法的风力发电机变桨距控制研究
作者姓名:张前  何山  黄嵩  董新胜  杨定乾  胡帅
作者单位:新疆大学电气工程学院;新疆大学后勤集团;国网新疆电力科学研究院
基金项目:新疆维吾尔自治区高校科研计划项目(XJEDU2021I010);自治区重点研发计划项目(2022B01003-3);
摘    要:风电机组模型的不确定性以及风速等外部干扰严重影响风电机组输出功率的稳定性,基于准确风机参数的传统控制策略难以满足系统控制需求。因此,本文提出一种基于DDPG算法的风机变桨距控制器。借助强化学习仅需与环境交互无需建模的优势,以风机模型为训练环境,功率为奖励目标,变桨角度为输出,采用深度神经网络搭建Actor-Critic单元,训练最优变桨策略。采用阶跃、低湍流、高湍流三种典型风况对算法进行检测。仿真结果表明,不同风况下基于DDPG算法控制器的控制精度、超调量、调节时间等性能均优于传统比例-积分-微分控制器效果。

关 键 词:风力发电机  强化学习  深度确定性策略梯度  变桨距控制
收稿时间:2022-09-13
修稿时间:2023-04-06
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号