首页 | 本学科首页   官方微博 | 高级检索  
     

有限von Neumann代数上完全保迹秩的映射
引用本文:侯晋川,张秀玲. 有限von Neumann代数上完全保迹秩的映射[J]. 太原理工大学学报, 2012, 43(3): 269-275
作者姓名:侯晋川  张秀玲
作者单位:1. 太原理工大学数学学院,太原,030024
2. 山西师范大学数计学院,山西临汾,041004
基金项目:国家自然科学基金资助项目(11171249)
摘    要:
从有限von Neumann代数的任意含0,±I的子集到该代数的以±I为不动点的每个完全迹秩不增(完全保迹秩)映射都可以延拓为该子集生成的子环上的可加可乘(单)映射,即(单射)环同态。特别地,矩阵代数上的以±I为不动点的完全秩不增映射必是环同态。

关 键 词:von Neumann代数  同态  迹秩

Completely Trace-Rank Preserving Maps on Finite von Neumann Algebras
HOU Jinchuan , ZHANG Xiuling. Completely Trace-Rank Preserving Maps on Finite von Neumann Algebras[J]. Journal of Taiyuan University of Technology, 2012, 43(3): 269-275
Authors:HOU Jinchuan    ZHANG Xiuling
Affiliation:1.College of Mathematics,TUT,Taiyuan 030024,China; 2.College of Mathematics and Computer Science,Shanxi Normal University,Linfen 041004,China)
Abstract:
Every completely trace-rank nonincreasing(or completely trace-rank preserving) map from a subset containing 0,±I of a finite von N eumann algebra A into the algebra A with ±I as fixed points can be extended to an additive and multiplicative(injective) map, that is,(injective) ring homomorphism.In particular,every completely rank no nincreasing map from a matrix algebra into itself with ±I as fixed points must be a ring homomorphism.
Keywords:von Neumann algebras  homomorphisms  trace-rank
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号