一类具有时滞和Holling Ⅱ型功能反应的捕食模型的全局稳定性和分支(英文) |
| |
摘 要: | 研究一类考虑捕食者妊娠产生的时滞和Holling II功能性反应的两种群捕食模型。通过分析特征方程,研究模型可行平衡点的局部稳定性及共存平衡点处Hopf分支的存在性。使用无穷维系统的持久性理论,证明当共存平衡点存在时,模型的持久性。通过构造恰当的李雅普诺夫函数以及使用La Salle不变性原理,证明当共存平衡点不存在时,捕食者灭绝平衡点是全局渐近稳定的;给出共存平衡点全局渐近稳定的充分条件。数值模拟例子验证了理论结果。
|
本文献已被 CNKI 等数据库收录! |
|