首页 | 本学科首页   官方微博 | 高级检索  
     

基于时频图像GLCM-HOG特征的往复压缩机故障诊断
引用本文:李辉,茆志伟,张进杰,江志农,黄翼飞. 基于时频图像GLCM-HOG特征的往复压缩机故障诊断[J]. 科学技术与工程, 2021, 21(10): 4030-4035. DOI: 10.3969/j.issn.1671-1815.2021.10.024
作者姓名:李辉  茆志伟  张进杰  江志农  黄翼飞
作者单位:北京化工大学高端机械装备健康监控与自愈化北京市重点实验室, 北京100029;压缩机技术国家重点实验室压缩机技术安徽省实验室, 合肥230031;北京化工大学高端机械装备健康监控与自愈化北京市重点实验室, 北京100029;北京博华安创科技有限公司, 北京101399
基金项目:压缩机技术安徽省实验室开放基金项目(SKL-YSJ201811);双一流建设专项经费资助(ZD1601)
摘    要:往复压缩机的故障诊断技术能够为工业生产提供有效保障,针对传统方法诊断准确率不高的问题,提出了一种基于振动信号时频图像灰度共生矩阵-方向梯度直方图(GLCM-HOG)特征融合的往复压缩机故障诊断方法.首先,采用小波变换的方法处理往复压缩机的振动信号,生成时频图像;其次,利用灰度共生矩阵(GLCM)和方向梯度直方图(HOG...

关 键 词:往复压缩机  振动信号  时频图像  特征提取  故障诊断
收稿时间:2020-06-13
修稿时间:2021-04-04

Fault diagnosis for reciprocating compressor based on GLCM-HOG features of time-frequency image
Li Hui,Mao Zhiwei,Zhang Jinjie,Jiang Zhinong,Huang Yifei. Fault diagnosis for reciprocating compressor based on GLCM-HOG features of time-frequency image[J]. Science Technology and Engineering, 2021, 21(10): 4030-4035. DOI: 10.3969/j.issn.1671-1815.2021.10.024
Authors:Li Hui  Mao Zhiwei  Zhang Jinjie  Jiang Zhinong  Huang Yifei
Abstract:The fault diagnosis technology of reciprocating compressor can provide an effective guarantee for industrial production. Due to the low recognition accuracy of the traditional method, a fault diagnosis method of reciprocating compressor based on the time-frequency image GLCM-HOG features fusion of vibration signal is proposed. Firstly, the vibration signals of reciprocating compressor are processed by wavelet transform to generate time-frequency images. Secondly, the gray co-occurrence matrix (GLCM) features and directional gradient histogram (HOG) features are respectively extracted from the time-frequency images and fused. Finally, the GLCM-HOG features are input into support vector machine (SVM) to determine the state of the reciprocating compressor. The experimental results show that the accuracy rate can reach 92.33%, and the proposed method can accurately realize fault diagnosis for reciprocating compressor.
Keywords:reciprocating compressor   vibration signal   time-frequency image   feature extraction   fault diagnosis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号