首页 | 本学科首页   官方微博 | 高级检索  
     

基于决策依赖度的粗糙集约简模型研究
引用本文:陈鑫影,李冠宇,刘彦含. 基于决策依赖度的粗糙集约简模型研究[J]. 系统工程理论与实践, 2016, 36(2): 505-516. DOI: 10.12011/1000-6788(2016)02-0505-12
作者姓名:陈鑫影  李冠宇  刘彦含
作者单位:1. 大连海事大学信息科学技术学院, 大连 116026;2. 大连交通大学软件学院, 大连 116028
基金项目:国家自然科学基金(61371090,61272171,61471079);大连市计划(2014A11GX006)
摘    要:为寻求高效的粗糙集约简模型,基于可分辨关系提出决策分辨约简、依赖性和依赖度等概念.与以往粗糙集约简模型相比,为提高约简精确性,提出性能为O(|P‖U|)的等价类划分方法和性能为O(|P‖U/C|)的属性重要性度量方法.同时给出了相关定理和等价命题,论证了传统决策约简模型和决策分辨约简模型的一致性.并基于属性重要性给出性能为O(|C|~2|U/C|)的求核方法和性能为Max{O(|C‖U|),O(|C|~2|U/C|)}的约简模型.新模型充分考虑了核属性和其他属性间的关联,从而有效降低冗余率,解决了对比模型存在的问题.理论和仿真实例分析表明新模型高效且结果准确率高.

关 键 词:数据挖掘  粗糙集  依赖度  属性重要性  约简模型  
收稿时间:2015-01-21

Research on rough set reduction model based on decision dependency degree
CHEN Xinying,LI Guanyu,LIU Yanhan. Research on rough set reduction model based on decision dependency degree[J]. Systems Engineering —Theory & Practice, 2016, 36(2): 505-516. DOI: 10.12011/1000-6788(2016)02-0505-12
Authors:CHEN Xinying  LI Guanyu  LIU Yanhan
Affiliation:1. College of Information Science & Technology, Dalian Maritime University, Dalian 116026, China;2. School of Software Technology, Dalian Jiaotong University, Dalian 116028, China
Abstract:To approach a good performance and practical model for attribute reduction in decision systems, the concept, distinguishable relation is given. Against the new concept, the "distinguishable reduction of decision system", "dependency" and "dependency degree" concepts are defined also in this paper. In order to improve the accuracy in the reduction result, one of the new methods which has time complexity of O(|P||U|) for equivalence class partition and another method which has time complexity of O(|P||U|) for attribute importance measurement are given. In the meanwhile, relevant theory and equivalent proposition are drawn out. After that, the consistence of the classic attribute reduction and distinguishable reduction is proved. Based on the attribute importance, a faster core set method which has upper limit of O(|C|2|U/C|) on time complexity and a reduction model which has time performance of Max{O(|C||U|), O(|C|2|U/C|)} are proposed here. The new reduction model thoroughly treats the relationship between the core set and other attributes, therefore, decreases the impact from analysis of distinguishable ability on single attribute. Thus, this model effectively reduces the redundancy in the reduction result and effectively solves the problems of model in contrast. The theoretical analysis and experimental result show that the new reduction model proposed here is feasible and meaningful.
Keywords:data mining  rough set  dependency degree  attribute importance  reduction model
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号