首页 | 本学科首页   官方微博 | 高级检索  
     

基于量子进化算法的空区激光探测点布局设计
引用本文:黄凯明,卢才武,连民杰. 基于量子进化算法的空区激光探测点布局设计[J]. 系统工程理论与实践, 2017, 37(4): 1024-1034. DOI: 10.12011/1000-6788(2017)04-1024-11
作者姓名:黄凯明  卢才武  连民杰
作者单位:1. 西安建筑科技大学 管理学院, 西安 710055;2. 集美大学 工商管理学院, 厦门 361021;3. 中钢矿业开发有限公司, 北京 100080
摘    要:针对地下空区边界不规则并且可能包含多个遗留矿柱,如何布局合适的探测点以便三维激光探头能扫描空区内部全貌的工程难题,提出了在基于空区初步资料获得的水平特征截面图上预先布置待选探测点,设计探测点布局方案评价函数,采用量子进化算法进行探测点布局优化的方案.优化设计中,考虑了采空区边界的凸凹不规则性及内部包含多个边界不规则遗留矿柱,以及激光探测范围等因素,建立了通用优化模型,寻求探测点最少的技术及经济上的最优布局方案.实例运算及统计分析结果表明,和遗传算法相比,本文提出的量子进化算法优化模型可快速得出优化的探测点布局方案,保证三维激光探测法成功实施,为复杂空区三维激光探测提供科学决策依据.

关 键 词:量子进化算法  复杂空区  三维激光探测法  遗传算法  优化设计  
收稿时间:2015-09-22

An optimal design for laser detecting holes lay-out of complex goaf with quantum-inspired evolutionary algorithm
HUANG Kaiming,LU Caiwu,LIAN Minjie. An optimal design for laser detecting holes lay-out of complex goaf with quantum-inspired evolutionary algorithm[J]. Systems Engineering —Theory & Practice, 2017, 37(4): 1024-1034. DOI: 10.12011/1000-6788(2017)04-1024-11
Authors:HUANG Kaiming  LU Caiwu  LIAN Minjie
Affiliation:1. School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China;2. School of Business Administration, Jimei University, Xiamen 361021, China;3. Sinosteel Mining Co., Ltd, Beijing 100080, China
Abstract:In this paper, a new solution is proposed for the engineering problem that designing accurate holes lay-out could be very hard by 3D laser detecting in complex goaf with irregular boundary and ore pillars. Some detecting holes should be pre-designed on the horizontal characteristic sectional image which is derived from the data of the history and the preliminary geophysical prospecting of the goaf, and the optimal solution can be worked out according to the system evaluation function with the quantum-inspired evolutionary algorithm (QEA). In the optimal solution, some factors such as the irregular boundary of the outline of the goaf, possible ore pillars with irregular boundary and the valid range of the laser probes as well as the economic benefit should also be taken into consideration to establish a general optimization model. The results of practical operation and statistical analysis show that the optimal model proposed in this paper is more effective in efficiency and accuracy than genetic algorithm (GA) which can provide the optimal solution in a relatively short time and make sure the solution work successfully. Thus, it helps to make scientific decision in detecting complex goaf with 3D laser.
Keywords:quantum-inspired evolutionary algorithm  complex goaf  3D laser detecting  genetic algorithm  optimal design
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号