首页 | 本学科首页   官方微博 | 高级检索  
     

半马氏市道轮换利率期限结构模型——基于最小Tsallis熵鞅测度
引用本文:柳向东,王星蕊. 半马氏市道轮换利率期限结构模型——基于最小Tsallis熵鞅测度[J]. 系统工程理论与实践, 2017, 37(5): 1136-1143. DOI: 10.12011/1000-6788(2017)05-1136-08
作者姓名:柳向东  王星蕊
作者单位:暨南大学 统计学系, 广州 510632
基金项目:国家自然科学基金(71471075);教育部人文社会科学研究项目(14YJAZH052);中央高校基本科研业务费专项资金(暨南跨越计划15JNKY003)
摘    要:基于Ho-Lee模型,讨论零息债券价格的演变,应用无套利原理和鞅测度的方法,建立了一个离散时间半马氏过程控制的市道轮换下的二叉树期限结构模型.运用最小Tsallis熵鞅测度(the minimal Tsallis entropy martingale measure,MTEMM)处理上述模型,并在马氏和半马氏市道下给出在欧式债券期权定价方面的应用.研究发现模型结果与最小熵鞅测度下的结果具有一致性.

关 键 词:Ho-Lee模型  利率期限结构  最小Tsallis熵鞅测度  债券期权定价  
收稿时间:2016-07-12

Semi-Markov regime switching interest rate term structure models-Based on minimal Tsallis entropy martingale measure
LIU Xiangdong,WANG Xingrui. Semi-Markov regime switching interest rate term structure models-Based on minimal Tsallis entropy martingale measure[J]. Systems Engineering —Theory & Practice, 2017, 37(5): 1136-1143. DOI: 10.12011/1000-6788(2017)05-1136-08
Authors:LIU Xiangdong  WANG Xingrui
Affiliation:Department of Statistics, Jinan University, Guangzhou 510632, China
Abstract:Based on Ho-Lee model, we discussed the evolution of the prices of zero-coupon. A discrete time regime switching binomial model of the term structure where the regime switches are governed by a discrete time semi-Markov process is introduced by applying the arbitrage free principle and martingale measure method. This paper use minimal Tsallis entropy martingale measure (MTEMM) to deal with the above model, and give an application to the pricing of a European bond option in Markov and semi-Markov regime switching framework. The study found the model result is consistent with the result under minimal entropy martingale measure.
Keywords:Ho-Lee model  term structure of interest rate  minimal Tsallis entropy martingale measure  bond option pricing
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号