首页 | 本学科首页   官方微博 | 高级检索  
     

基于BEMD-Copula-GARCH模型的股票投资组合VaR风险度量研究
引用本文:王璇,采俊玲,汤铃,贺凯健. 基于BEMD-Copula-GARCH模型的股票投资组合VaR风险度量研究[J]. 系统工程理论与实践, 2017, 37(2): 303-310. DOI: 10.12011/1000-6788(2017)02-0303-08
作者姓名:王璇  采俊玲  汤铃  贺凯健
作者单位:1. 北京化工大学 经济管理学院, 北京 100029;2. 北京航空航天大学 经济管理学院, 北京 100191;3. 湖南科技大学 商学院, 湘潭 411201
基金项目:国家自然科学基金(71433001,71301006,71201054)
摘    要:鉴于股票波动具有显著的多尺度特征,本文引入二元经验模态分解(EMD)与二元CopulaGARCH算法,提出一种新的VaR风险度量模型,即BEMD-Copula-GARCH模型.具体地,新BEMD-Copula-GARCH模型可分为三个主要步骤:数据分析,分风险估计和总风险集成.首先,基于二元EMD模型,将复杂且相互作用的股票对分解为若干组较为简单且相互独立的分量,以降低建模难度.其次,引入二元Copula-GARCH模型,刻画各组分量间的相互关系,以度量股票投资组合在不同尺度上的分VaR值.最后,集成各分VaR值以得出最终VaR风险度量结果.实证研究以恒生指数与上证综指为数据样本构造投资组合,结果表明:本文所构建的新模型能有效度量投资组合风险,其估计精度显著优于DCC-GARCH和Copula-GARCH等现有模型.

关 键 词:风险度量  VaR  经验模态分解  Copula  GARCH  投资组合  
收稿时间:2015-05-26

VaR measurement for stock portfolio based on BEMD-Copula-GARCH model
WANG Xuan,CAI Junling,TANG Ling,HE Kaijian. VaR measurement for stock portfolio based on BEMD-Copula-GARCH model[J]. Systems Engineering —Theory & Practice, 2017, 37(2): 303-310. DOI: 10.12011/1000-6788(2017)02-0303-08
Authors:WANG Xuan  CAI Junling  TANG Ling  HE Kaijian
Affiliation:1. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China;2. School of Economics and Management, Beihang University, Beijing 100191, China;3. School of Business, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract:Given that stock fluctuation has significant multi-scale features, a novel Value-at-Risk (VaR) model is proposed by combining the binary empirical mode decomposition (BEMD) and Copula-GARCH algorithm, i.e., BEMD-Copula-GARCH model. In the proposed model, three main steps are included, i.e., data decomposition, individual risk measurement, and total risk integration. First, the binary EMD technique is employed to decomposed the pair of complex and interactive stock series into pairs of relatively simple and independent components, to reduce the modeling difficulty. Second, Copula-GARCH model is introduced to individually capture the dynamic dependence between the decomposed components in pairs, in terms of VaR at different time-scale. Finally, the individual results are integrated into the final VaR measure. In the empirical study, the portfolio with equal-weighted Hang Seng Index and Shanghai Composite index is analyzed, and the results indicate that the proposed model outperform the benchmark DCC-GARCH model and Copula-GARCH model in terms of the risk measurement accuracy.
Keywords:risk measurement  Value-at-Risk  empirical mode decomposition algorithm  Copula  GARCH  stock portfolio
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号