首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进紧致遗传算法的柔性流水车间组批排产优化问题研究
引用本文:韩忠华,朱一行,史海波,董晓婷. 基于改进紧致遗传算法的柔性流水车间组批排产优化问题研究[J]. 系统工程理论与实践, 2016, 36(6): 1616-1624. DOI: 10.12011/1000-6788(2016)06-1616-09
作者姓名:韩忠华  朱一行  史海波  董晓婷
作者单位:1. 沈阳建筑大学 信息与控制工程学院, 沈阳 110168;2. 中国科学院 沈阳自动化研究所 数字工厂研究室, 沈阳 110016;3. 中国科学院 网络化控制系统重点实验室, 沈阳 110016;4. 鲁汶大学 工程与技术学院, 根特 9000;5. 四川建筑职业技术学院 电气工程系, 德阳 618000
基金项目:国家重大科技专项(2011ZX02601-005);中科院网络化控制系统重点实验室开放课题
摘    要:
为了解决柔性流水车间组批排产优化问题(flexible flow shop scheduling problem with batch process machines,FFSP-BPM),对组批加工环节中工件加工方式的变化以及工件的组批方式进行了分析,建立了:FFSP-BPM的数学规划模型,并在标准紧致遗传算法的基础上,加入了基于汉明距离的个体选择机制,双个体概率模型更新机制和基于进化停滞代数的自适应精英继承策略三处改进,提出一种自适应协同进化紧致遗传算法(self-adaptive co-evolut,ion compact geneticr algorithm,SCCGA)作为全局优化算法.设计仿真实验,对算法中新引入的参数进行分析和探讨,确定了最佳参数值,最后通过实例测试,并与其他算法进行对比研究,验证了本算法对于解决实际生产中:FFSP-BPM这类排产问题的有效性.

关 键 词:柔性流水车间  组批加工  紧致遗传算法  汉明距离  双个体概率模型  
收稿时间:2015-01-15

Study for the flexible flow shop scheduling problem with batch process machines based on an advanced compact genetic algorithm
HAN Zhonghua,ZHU Yihang,SHI Haibo,DONG Xiaoting. Study for the flexible flow shop scheduling problem with batch process machines based on an advanced compact genetic algorithm[J]. Systems Engineering —Theory & Practice, 2016, 36(6): 1616-1624. DOI: 10.12011/1000-6788(2016)06-1616-09
Authors:HAN Zhonghua  ZHU Yihang  SHI Haibo  DONG Xiaoting
Affiliation:1. Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China;2. Department of Digital Factory, Shenyang Institute of Automation, CAS, Shenyang 110016, China;3. Key Laboratory of Networked Control System, CAS, Shenyang 110016, China;4. Engineering and Technology Faculty, KU Leuven, Ghent 9000, Belgium;5. Department of Electrical Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
Abstract:
In order to solve the flexible flow shop scheduling problem with batch process machines (FFSP-PBM), both the change of jobs' processing methods and how jobs will be grouped in the batching process stages are analyzed, the FFSP-BPM's mathematical model is constructed, and a self-adaptive co-evolution compact genetic algorithm (SCCGA) which contains three modifications including the individual selection strategy in terms of Hanming distance, the probabilistic model updating mechanism with two individuals and the self-adaptive elite inherence strategy over the standard compact genetic algorithm, is proposed as the global optimizing tool. Furthermore, the best parameters are set after some relative tests. Results of the controlled trial in the last show the efficiency of our proposed SCCGA in solving the FFSP-BPM in the realistic production.
Keywords:flexible flow shop  batch processing  compact genetic algorithm  Hanming distance  double individual probabilistic model
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号