首页 | 本学科首页   官方微博 | 高级检索  
     

基于极限学习机的生化过程软测量建模
引用本文:常玉清,李玉朝,王福利,吕哲. 基于极限学习机的生化过程软测量建模[J]. 系统仿真学报, 2007, 19(23): 5587-5590
作者姓名:常玉清  李玉朝  王福利  吕哲
作者单位:1. 东北大学流程工业综合自动化教育部重点实验室,沈阳,110004;东北大学信息科学与工程学院,沈阳,110004
2. 沈阳理工大学机械工程学院,沈阳,110168
3. 东北大学信息科学与工程学院,沈阳,110004
基金项目:国家自然科学基金;国家重点基础研究发展计划(973计划)
摘    要:针对极限学习机方法隐层神经元数目过多的缺陷,提出一种改进的极限学习机方法。在单隐层前向神经网络的隐层中,增加一类分类神经元,从而形成了一种新的单隐层神经网络结构。针对不同类样本数不相同的问题,提出了处理方法,使得可以利用相同的隐层神经元对不同类的学习样本进行拟合,这使得网络的隐层神经元数目大大降低,从而简化了模型的结构,提高了神经网络的计算速度。将这一方法应用于诺西肽发酵过程,建立了菌体浓度的软测量模型,实现了菌体浓度的在线预估。

关 键 词:极限学习机  软测量  建模  菌体浓度
文章编号:1004-731X(2007)23-5587-04
收稿时间:2006-09-27
修稿时间:2006-10-31

Soft Sensing Modeling Based on Extreme Learning Machine for Biochemical Processes
CHANG Yu-qing,LI Yu-chao,WANG Fu-li,LV Zhe. Soft Sensing Modeling Based on Extreme Learning Machine for Biochemical Processes[J]. Journal of System Simulation, 2007, 19(23): 5587-5590
Authors:CHANG Yu-qing  LI Yu-chao  WANG Fu-li  LV Zhe
Abstract:An improved extreme learning machine (ELM) method was proposed for soft sensing modeling, and the disadvantage of profuse hidden nodes in ELM network was overcome. By adding a kind of sorting neurons into the hidden layer of the single-hidden-layer feed forward neural network (SLFN), a new SLFN structure was proposed. A method was proposed to solve the problem of the number difference of the sample sorts, and then the same hidden neural nodes could be used to fit the different kind of samples. By this way, the number of hidden nodes was decreased, the model structure was simplified, and the on-line computation speed was increased markedly. The proposed method provided a new approach to build soft sensing models, and it was successfully applied to the soft sensing modeling the of thalli concentration for the Nosiheptied fermentation process to realize the on-line prediction of the thalli concentration.
Keywords:extreme learning machine   soft sensing   modeling   thalli concentration
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号