首页 | 本学科首页   官方微博 | 高级检索  
     

优化算法在人脸表情识别中的应用研究
作者姓名:黄豪豪  李铭田  张富春
作者单位:延安大学物理与电子信息学院
摘    要:在人脸表情识别任务中,适用的优化算法可以有效地提高表情识别的效率。针对人脸表情识别任务中的优化算法选择问题,比较研究了SGD、Momentum以及Adagrad、Adadelta、Adam 3种自适应学习率方法在人脸表情识别任务上的表现。特别是为了检验结果的可靠性,采用相同方法在MNIST数据集上进行手写数字识别测试。实验结果显示,在人脸表情识别与其他任务中,自适应学习率方法和动量法性能优于SGD方法,且自适应学习率方法在提高模型准确率上更为突出,Adadelta在表情识别和手写数字识别任务上的准确率达到了96.12%和99%。研究表明,在人脸表情识别任务中,自适应学习率的优化算法具有明显优势。

关 键 词:深度学习  表情识别  随机梯度下降  自适应学习率
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号