摘 要: | 在人脸表情识别任务中,适用的优化算法可以有效地提高表情识别的效率。针对人脸表情识别任务中的优化算法选择问题,比较研究了SGD、Momentum以及Adagrad、Adadelta、Adam 3种自适应学习率方法在人脸表情识别任务上的表现。特别是为了检验结果的可靠性,采用相同方法在MNIST数据集上进行手写数字识别测试。实验结果显示,在人脸表情识别与其他任务中,自适应学习率方法和动量法性能优于SGD方法,且自适应学习率方法在提高模型准确率上更为突出,Adadelta在表情识别和手写数字识别任务上的准确率达到了96.12%和99%。研究表明,在人脸表情识别任务中,自适应学习率的优化算法具有明显优势。
|