首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的修正 Liu-Storey 共轭梯度法的全局收敛性(英)
引用本文:曹伟,王开荣. 一种新的修正 Liu-Storey 共轭梯度法的全局收敛性(英)[J]. 华东师范大学学报(自然科学版), 2010, 2010(1): 44-51
作者姓名:曹伟  王开荣
作者单位:重庆大学数理学院,重庆,400030
摘    要:在 Liu-Storey(LS)公式的基础上给出了一个修正的共轭梯度公式 beta _k^MLS. 证明了该新公式在 Wolfe-Powell 线搜索下, 甚至在强 Wolfe-Powell 线搜索下, 在满足sigma in bigg(0,textstyle1 over 2bigg) 的同时, 新算法具有充分下降性和全局收敛性. 数值结果展现了算法的可行性.

关 键 词:无约束优化  共轭梯度法  SWP线搜索  全局收敛性  无约束优化  共轭梯度法  SWP线搜索  全局收敛性
收稿时间:2009-04-21
修稿时间:2009-06-18

Global convergence of a new conjugate gradient method for modified Liu-Storey formula
CAO Wei,WANG Kai-rong. Global convergence of a new conjugate gradient method for modified Liu-Storey formula[J]. Journal of East China Normal University(Natural Science), 2010, 2010(1): 44-51
Authors:CAO Wei  WANG Kai-rong
Affiliation:College of Mathematics and Physics, Chongqing University, Chongqing 400030, China
Abstract:In this paper, a modified conjugate gradient formula beta _k^MLSbased on the formula of the Liu-Storey(LS) nonlinear conjugate gradient method was proposed. It was proved that under the Wolfe-Powell line search and even under the strong Wolfe-Powell line search, with parameter sigma in bigg(0,frac12bigg), the new method has sufficient descent and global convergence properties. Preliminary numerical results show that the method is very promising.
Keywords:unconstrained optimization  conjugate gradient method  SWP line search  global convergence
本文献已被 万方数据 等数据库收录!
点击此处可从《华东师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华东师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号