首页 | 本学科首页   官方微博 | 高级检索  
     

基于Split Bregman算法的MRI图像重建参数分析
引用本文:刘梅,廖柏林. 基于Split Bregman算法的MRI图像重建参数分析[J]. 吉首大学学报(自然科学版), 2015, 36(5): 39-44. DOI: 10.3969/j.cnki.jdxb.2015.05.009
作者姓名:刘梅  廖柏林
作者单位:(1.吉首大学物理机电与工程学院,湖南 吉首 416000 2.吉首大学信息科学与工程学院,湖南 吉首 416000)
基金项目:吉首大学校级课题资助项目(15JD013);湖南省教育厅科学研究项目(13C757)
摘    要:
压缩感知理论已应用在MRI成像中,作为压缩感知的非线性重建算法的重要分支,以Split Bregman算法为代表的凸松弛法将信号重建问题转化为凸优化问题求解,其计算效率高.对Split Bregman算法的正则化参数功能和调节机制进行了理论研究,分析了正则化参数对该算法收敛精度和收敛速度的影响.仿真结果表明了3个正则化参数对MRI图像重建效率和精度的影响程度.

关 键 词:压缩感知  磁共振图像重建  非线性求逆  凸松弛Split Bregman算法

Analysis on MRI Image Parameter Reconstruction Based on Split Bregman Algorithm
LIU Mei,LIAO Bai-Lin. Analysis on MRI Image Parameter Reconstruction Based on Split Bregman Algorithm[J]. Journal of Jishou University(Natural Science Edition), 2015, 36(5): 39-44. DOI: 10.3969/j.cnki.jdxb.2015.05.009
Authors:LIU Mei  LIAO Bai-Lin
Affiliation:(1.College of Physics and Electromechanical Engineering,Jishou University,Jishou 416000,Hunan China;2. College of Information Science and Engineering,Jishou University,Jishou 416000,Hunan China)
Abstract:
The emerging compressed sensing (CS) theory,which includes the incoherent measurement matrix,sparse representation,and nonlinear signal reconstruction,has been employed in the magnetic resonance imaging (MRI).This paper focuses on Split Bregman algorithm which transforms the problem of convex relaxation to the problem of convex optimization.The main advantages of Split Bregman lie in its high computational efficiency and its capacity to solve multi-regularized inverse problem with high accuracy in MRI reconstruction.The function and tuning mechanism of regularization parameters are analyzed theoretically firstly,and then the influences of tuning the regularization parameters on the convergence accuracy and speed are investigated.In this way,the guidelines are provided for choosing suitable parameters in practical applications.
Keywords:compressed sensing   magnetic resonance imaging   nonlinear inversion   convex relaxation Split-Bregman regularization algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号