首页 | 本学科首页   官方微博 | 高级检索  
     

一类延时细胞神经网络的指数周期性与稳定性
引用本文:周立群,张艳艳,王贵君. 一类延时细胞神经网络的指数周期性与稳定性[J]. 系统仿真学报, 2010, 22(3)
作者姓名:周立群  张艳艳  王贵君
作者单位:天津师范大学数学科学学院,天津,300387
基金项目:天津师范大学博士基金(52LX34); 天津市教委规划项目(20070405); 国家自然科学基金(60974144)
摘    要:
细胞神经网络动态行为的研究是细胞神经网络应用的理论基础。对一类具分布延时细胞神经网络,研究了其全局指数周期性与稳定性。在输出函数满足全局Lipschitz连续的条件下,通过构造合适的Lyapunov泛函,给出了延时细胞神经网络全局指数周期性与稳定性的容易验证的充分条件。给出了算例及其仿真结果来验证所得结论,并说明所得结论与文献[16]的结论是相互独立的。

关 键 词:延时细胞神经网络  全局指数周期性  稳定性  Lyapunov泛函  

Exponential Periodicity and Stability of a Class of Delayed Cellular Neural Networks
ZHOU Li-qun,ZHANG Yan-yan,WANG Gui-jun. Exponential Periodicity and Stability of a Class of Delayed Cellular Neural Networks[J]. Journal of System Simulation, 2010, 22(3)
Authors:ZHOU Li-qun  ZHANG Yan-yan  WANG Gui-jun
Affiliation:ZHOU Li-qun,ZHANG Yan-yan,WANG Gui-jun (Science of Mathematics College,Tianjin Normal University,Tianjin 300387,China)
Abstract:
Studies on the dynamics behaviors of cellular neural networks (CNNs) are the theory foundation of the applications of CNNs. The global exponential periodicity and stability were investigated for a class of cellular neural networks with distributed delays. When the output functions satisfied globally Lipschitz continuous, some easily verifiable sufficient conditions were derived by constructing a suitable Lyapunov functional. And some examples and simulation results support the conclusions and show these con...
Keywords:delayed cellular neural networks  global exponential periodicity  stability  Lyapunov functional  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号