首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络方法的大型电网短期负荷预报
引用本文:赵希人,彭秀艳,姜广宇. 基于神经网络方法的大型电网短期负荷预报[J]. 系统仿真学报, 2006, 18(6): 1677-1680
作者姓名:赵希人  彭秀艳  姜广宇
作者单位:哈尔滨工程大学自动化学院,哈尔滨,150001
摘    要:
电力系统负荷预报研究现状,介绍了神经网络方法应用于电力系统短期负荷预报的可行性及存在的问题。详细讨论了应用BP神经网络、共轭梯度算法改进BP神经网络方法进行电力系统短期负荷预报的算法,及在预报过程中对电网负荷数据进行预处理方法。分别应用二种方法对东北电力系统进行了72小时短期负荷预报仿真。仿真结果表明,BP神经网络训练时间长,预报精度低;而共轭梯度算法改进BP神经网络算法训练步数大大减小,缩短了网络训练时间,而且提高了预报精度。该方法可行,可用于电力系统短期负荷在线预报。

关 键 词:短期负荷预报  BP神经网络  共轭梯度法  在线预报  仿真
文章编号:1004-731X(2006)06-1677-04
收稿时间:2005-04-11
修稿时间:2006-03-03

China Northeast Power Network Short-term Load Forecasting Based on Neural Network
ZHAO Xi-ren,PENG Xiu-yan,JIANG Guang-yu. China Northeast Power Network Short-term Load Forecasting Based on Neural Network[J]. Journal of System Simulation, 2006, 18(6): 1677-1680
Authors:ZHAO Xi-ren  PENG Xiu-yan  JIANG Guang-yu
Affiliation:School of Automation, Harbin Engineering University, Harbin 150001, China
Abstract:
The search status of power network short-term load forecasting was introduced first,and the feasibility and problem that neural network was used in power network short-term load forecasting were introduced.The algorithms were discussed detailedly,which used BP neural network and improved BP neural network with conjugate gradient algorithm forecast power network short-term load.And the preprocessing method of power network history data was given.Then the simulation results of two kinds of forecasting method were given for 72 hours power network load of northeast of China.According to the forecasting simulation results,the conclusions are given that BP neural network training time is longer and forecasting precision is lower,but the improved BP neural network algorithm with Conjugate gradient algorithm makes the training times shorter,and it enhances forecasting precision.The calculation results show that the approaches of the improved BP neural network with conjugate gradient algorithm is feasible and can be used to forecast on line.
Keywords:short-term load forecast  BP neural network  conjugate gradient algorithm  on-line forecasting  simulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号