首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of fatty acids on polyamine contents and Na+/H+ antiport activity in PM vesicles isolated from roots of barley under salt stress
Authors:Zhao  Fugeng  Shu  Huairui
Institution:(1) School of Horticulture, Shandong Agricultural University, 27101 Tai’an, China
Abstract:With 200 mmol/L NaCl treatment on barley cultivar “Jian 4” (Hordeum vulgare L. cv. J4) seedlings for 6 d, the contents of covalently and noncovalently conjugated polyamines (PAs) and activities of H+-ATPase in plasma membrane (PM) vesicles isolated from the roots decreased remarkably. Moreover, the activity of Na+/H+ antiport was detected first in PM vesicles. The results showed that the decrease in the contents of membrane phospholipid, noncovalently conjugated PAs and activity of H+-ATPase caused by NaCl could be restored partially by application of 1 mmol/L stearie acid (C16:0) and linoleic acid (C18:2), and C18:2 was more effective than C16:0 In addition, a reduction in the contents of covalently conjugated PAs was only reversed partially in the presence of C18:2 Furthermore, Na+/H+ antiport activity was strengthened by exogenous C16:0 and C18:2 and C18:2 was more effective than C16:0. The correlative analysis suggested that, after application of C16:0 and C18:2 under salt stress, there was a significant positive correlation existing among phospholipid content, noncovalently conjugated PA levels, H+-ATPase activities and Na+/H+ antiport activities, indicating that one of the mitigative mechanisms of exogenous fatty acids on salt injury was to improve membrane phospholipid and PA contents, leading to an enhance in membrane integrity and a change in charge status of PM vesicles, so the activity of membrane-associated enzyme H+-ATPase was increased and synthesis of Na+/H+ antiport protein was activated.
Keywords:fatty acids  plasma membrane vesicles  polyamines  Na+/H+ antiport  barley
本文献已被 SpringerLink 等数据库收录!
点击此处可从《中国科学通报(英文版)》浏览原始摘要信息
点击此处可从《中国科学通报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号