首页 | 本学科首页   官方微博 | 高级检索  
     

时间分数阶Klein-Gordon型方程的解析近似解
引用本文:郭鹏,王艺红,陶春兴,李常品. 时间分数阶Klein-Gordon型方程的解析近似解[J]. 科技导报(北京), 2009, 27(2)
作者姓名:郭鹏  王艺红  陶春兴  李常品
作者单位:上海大学数学系,上海,200444;上海大学数学系,上海,200444;浙江林业大学数学系,杭州,311300;上海大学数学系,上海,200444;越南河内矿业地质大学数学系,河内,100803,越南
摘    要:采用Adomian分裂方法,给出在Caputo导数意义下的时间分数阶Klein-Gordon方程的解析近似解,并举例说明了Adomian 分裂方法在求解上的高效性,通过4个表给出的近似解和精确解的误差,可以看出Adomian分裂方法在求解时间分数阶Klein-Gordon 方程时能得到很高的精度.

关 键 词:近似解析解  Adomian分裂方法  Klein-Gordon方程  Caputo导数

An Approximate Analytical Solution to the Family of Time Fractional Klein-Gordon Equations
GUO Peng,WANG Yihong,,TAO Chunxing,,LI Changpin. An Approximate Analytical Solution to the Family of Time Fractional Klein-Gordon Equations[J]. Science & Technology Review, 2009, 27(2)
Authors:GUO Peng  WANG Yihong    TAO Chunxing    LI Changpin
Affiliation:GUO Peng1,WANG Yihong1,2,TAO Chunxing1,3,LI Changpin1 1. Department of Mathematics,Shanghai University,Shanghai 200444,China 2. Department of Mathematics,Zhejiang Forest University,Hangzhou 311300,China 3. Department of Mathematics,Hanoi University of Mining , Geology,Hanoi 100803,Vietnam
Abstract:In this paper, the Adomian decomposition method is used to obtain an approximate analytical solution to the time fractional Klein -Gordon equation, where the fractional derivatives are in Caputo sense. Some examples are given to show the efficiency of the method, the approximate solution and exact solution of the error are given by four tables, and it is shown that the Adomian decomposition method in solving the time fractional Klein-Gordon equation can be very high precision.
Keywords:approximate analytical solution  Adomian decomposition method  Klein-Gordon equation  Caputo derivative  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号