首页 | 本学科首页   官方微博 | 高级检索  
     

奇数阶常微分方程的反周期解
引用本文:佘彦,骆昱成. 奇数阶常微分方程的反周期解[J]. 吉林大学学报(理学版), 2009, 47(1): 34-36
作者姓名:佘彦  骆昱成
作者单位:吉林大学,数学研究所,长春,130012;吉林大学,数学学院,长春,130012
摘    要:考虑奇数阶常微分方程的反周期问题, 把问题先转化为求算子的不动点问题, 再利用拓扑度理论, 证明算子不动点的存在性, 从而得到所考虑问题解的存在性, 最后证明了解的惟一性.

关 键 词:奇数阶常微分方程  反周期解  拓扑度理论
收稿时间:2008-10-23

Anti-periodic Solutions for (2n+1)-Order Ordinary Differential Equations
SHE Yan,LUO Yu-cheng. Anti-periodic Solutions for (2n+1)-Order Ordinary Differential Equations[J]. Journal of Jilin University: Sci Ed, 2009, 47(1): 34-36
Authors:SHE Yan  LUO Yu-cheng
Affiliation:1. Institute of Mathematics, Jilin University, Changchun 130012, China; 2. College of Mathematics, Jilin University, Changchun 130012, China
Abstract:The present paper deals with the anti-periodic problems for(2n+1)-order ordinary differential equation.Under certain assumpations,we presented some results about the existence and uniqueness of anti-periodic solutions for(2n+1)-order ordinary differential equations using the topological degree theory.
Keywords:(2n+1)-order odinary differential equation  an ti periodic solutions  topological degree theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号