首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的基于神经网络混沌吸引子的公钥密码算法
引用本文:刘年生,郭东辉. 一种新的基于神经网络混沌吸引子的公钥密码算法[J]. 集美大学学报(自然科学版), 2005, 10(2): 125-133
作者姓名:刘年生  郭东辉
作者单位:集美大学计算机工程学院,福建,厦门,361021;厦门大学物理与机电工程学院,福建,厦门,361005
基金项目:国家自然科学基金项目(69886002,60076015),福建省自然科学基金项目(A0010019)
摘    要:论述了一种新的基于神经网络混沌吸引子的公钥密码算法,在过饱和贮存的Hopfield神经网络模型中混沌吸引子与初始状态之间存在一种单向函数关系,改变神经网络的联结权矩阵,混沌吸引子及其相应的吸引域会随之发生改变,如果以联结权矩阵为陷门,并利用可交换的随机变换矩阵来改变神经网络的联结权矩阵,则可以创建一种新的Diffie-Hellman公钥加密算法.将随机变换矩阵作为私钥,而将变换后的神经网络联结突触矩阵作为公钥,介绍了这种新的公钥加密方案,并分析和讨论其安全性和加密效率。

关 键 词:神经网络  公钥密码体制  混沌吸引子  矩阵分解
文章编号:1007-7405(2005)02-0125-09
修稿时间:2004-10-21

A New Public-key Cryptography Based on Chaotic Attractors of Neural Networks
LIU Nian-sheng,GUO Dong-hui. A New Public-key Cryptography Based on Chaotic Attractors of Neural Networks[J]. the Editorial Board of Jimei University(Natural Science), 2005, 10(2): 125-133
Authors:LIU Nian-sheng  GUO Dong-hui
Affiliation:LIU Nian-sheng1,GUO Dong-hui2
Abstract:A new public-key cryptography based on chaotic attractors of neural networks is described. There is a one-way function between chaotic attractors and initial states in an Overstoraged Hopfield Neural Networks (OHNN), and each attractor and its correspond ing domain of attraction are changed with permuta- tion operations on the neural synaptic matrix. If the neural synaptic matrix is used as a trap door and changed by commutative random permutation matrix, a new cryptography technique accord ing to D iffie-Hellman public- key cryptosystem is proposed. By keeping the random permutation operation of the neural synaptic matrix as the secret key, and the neural synaptic matrix after permutation as public-key, a new encryption scheme for a public-key cryptosystem is introduced. Security of the new scheme is d iscussed.
Keywords:neural networks  public-key cryptosystem  chaotic attractor  matrix decomposition
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号