首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的LVQ算法的中医脉象识别
引用本文:李华东,王崇骏,李训铭,黄春海,黄炜恒. 基于改进的LVQ算法的中医脉象识别[J]. 广西师范大学学报(自然科学版), 2006, 24(4): 195-198
作者姓名:李华东  王崇骏  李训铭  黄春海  黄炜恒
作者单位:河海大学,电气工程学院,江苏,南京,210098;南京大学,计算机软件新技术国家重点实验室,江苏,南京,210093
摘    要:中医脉诊的客观化研究对我国中医脉学的继承和开拓有着重要的意义,而脉象识别是中医脉诊的客观化过程中一个重要的环节,近年来一直是个研究热点。有别于传统的脉象特征提取方法和识别方法是基于时域和神经网络的方法,在此提出了基于小波变换的脉象特征提取算法和用于脉象识别的基于LVQ的改进算法ILVQ。实验结果表明,该算法具有一定的优越性。

关 键 词:脉象  LVQ算法  小波变换
文章编号:1001-6600(2006)04-0195-04
收稿时间:2006-05-31
修稿时间:2006-05-31

Using Improved LVQ for Classifying Human Pulse
LI Hua-dong,WANG Chong-jun,LI Xun-ming,HUANG Chun-hai,HUANG Wei-heng. Using Improved LVQ for Classifying Human Pulse[J]. Journal of Guangxi Normal University(Natural Science Edition), 2006, 24(4): 195-198
Authors:LI Hua-dong  WANG Chong-jun  LI Xun-ming  HUANG Chun-hai  HUANG Wei-heng
Affiliation:1. College of Electrical Engineering,Hehai University,Nanjing 210098 ,China 2. State Key Laboratory for Novel Software Teehnology,Nanjing University,Nanjing 210093,China
Abstract:The research of human pulse objectification plays a very important role in inheriting and developing the study of pulse in Chinese Medicine,as an important part of it,pulse condition recognition becomes a focus of present study.Traditional feature extracting method and pulse condition recognition method are based on time-domain and artificial neural network.Two algorithms are proposed in this paper,they are an algorithm for feature extracting based on wavelet transform and ILVQ,an improved LVQ algorithm.The experimental results indicate that these two algorithms have their own superiority.
Keywords:human pulse  LVQ  wavelet transform
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号