首页 | 本学科首页   官方微博 | 高级检索  
     

砂土液化判别最优BP神经网络模型
引用本文:刘利艳,潘健,林慧常. 砂土液化判别最优BP神经网络模型[J]. 湘潭大学自然科学学报, 2006, 28(2): 123-126
作者姓名:刘利艳  潘健  林慧常
作者单位:1. 华南理工大学,建筑学院,广东,广州,510640
2. 茂名市建设工程质量监督检测站,广东,茂名,525000
摘    要:
利用BP网络模型在解决砂土液化评价这类非线性问题方面的优势,选取不同的参数组合,建立不同的砂土液化判别BP神经网络模型,并根据现场实测资料进行比较分析.结果表明,以地震烈度、标准贯入点深度、地下水位深度、标贯击数、不均匀系数及地震剪应力比作为输入节点的砂土液化判别BP神经网络模型最为合理.

关 键 词:砂土液化  BP神经网络模型  判别
文章编号:1000-5900(2006)02-0123-04
收稿时间:2005-12-13
修稿时间:2005-12-13

Discussion of the Best BP Neural Network Model Using Evaluation of Soil Liquefaction
LIU Li-yan,PAN Jian,LIN Hui-chang. Discussion of the Best BP Neural Network Model Using Evaluation of Soil Liquefaction[J]. Natural Science Journal of Xiangtan University, 2006, 28(2): 123-126
Authors:LIU Li-yan  PAN Jian  LIN Hui-chang
Affiliation:1. College of Architecture and Civil Engineering, South China Univ. of Tech. , Guangzhou 510640 China; 2. Maoming Quality Supervision Checkpoint of Constructing Engineering, Maoming 525000 China
Abstract:
Taking the advantage of BP neural network in solving nonlinear problems such as sand liquefaction,different BP neural network models for liquefaction differentiation are established based on different combinations of the input neurons.By means of analyzing the observation data,the results show that the most logical BP neural network model is the model that selects earthquake intensity,the depth of standard penetration test point,underground water level,standard penetration blow-count,non-uniformity coefficient and the ratio of shearing stress as its indexes.
Keywords:sand liquefaction  BP neural network model  evaluation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《湘潭大学自然科学学报》浏览原始摘要信息
点击此处可从《湘潭大学自然科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号