摘 要: | 针对当前空间数据库聚类方法未考虑降维后的距离特征反向结果, 导致空间数据分量失真, 存在聚类精度低、 耗时长的问题, 提出一种空间数据库反向最近邻聚类方法. 首先, 通过选取训练样本集实现核矩阵的特征分解, 获得其距离特征修正值去除初始值的影响; 然后, 根据核主成分分析(KPCA)降维并结合降维后的距离特征反向结果, 利用反向最近邻聚类方法与扩展的部分失真搜索法相结合, 实现空间数据的聚类; 最后利用选定的聚类中心对数据集进行计算, 计算数据集第一维分量与聚类中心第一维分量之间的失真, 得到反向最近邻, 直至所有空间数据均找到所属类别, 最终完成空间数据库反向最近邻聚类. 实验结果表明, 该方法提高了空间数据的聚类精度, 减少了空间数据聚类所用时间.
|