首页 | 本学科首页   官方微博 | 高级检索  
     

空间数据库反向最近邻聚类方法
作者姓名:刘久彪
作者单位:天津财经大学管理可计算建模协同创新中心,天津,300222
摘    要:针对当前空间数据库聚类方法未考虑降维后的距离特征反向结果, 导致空间数据分量失真, 存在聚类精度低、 耗时长的问题, 提出一种空间数据库反向最近邻聚类方法. 首先, 通过选取训练样本集实现核矩阵的特征分解, 获得其距离特征修正值去除初始值的影响; 然后, 根据核主成分分析(KPCA)降维并结合降维后的距离特征反向结果, 利用反向最近邻聚类方法与扩展的部分失真搜索法相结合, 实现空间数据的聚类; 最后利用选定的聚类中心对数据集进行计算, 计算数据集第一维分量与聚类中心第一维分量之间的失真, 得到反向最近邻, 直至所有空间数据均找到所属类别, 最终完成空间数据库反向最近邻聚类. 实验结果表明, 该方法提高了空间数据的聚类精度, 减少了空间数据聚类所用时间.

关 键 词:空间数据库  空间距离  数据修正  降维  反向最近邻  聚类方法
收稿时间:2017-12-07
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号