首页 | 本学科首页   官方微博 | 高级检索  
     

基于功率谱小波分解的神经网络钻头磨损监测
引用本文:郑建明,李言,肖继明,洪伟. 基于功率谱小波分解的神经网络钻头磨损监测[J]. 应用科学学报, 2004, 22(4): 513-517
作者姓名:郑建明  李言  肖继明  洪伟
作者单位:西安理工大学机械与精密仪器工程学院 陕西西安 710048
摘    要:在钻削过程中,钻削力功率谱与钻头磨损之间具有较强的相关性,被广泛用于钻头磨损监测,但是关于功率谱特征的提取和识别一直没有很好解决.文中采用小波变换对功率谱进行多层分解,提取低频分解系数作为功率谱的包络信息,从而实现对功率谱特征的提取和压缩,并利用BP神经网络对功率谱小波低频分解系数进行融合,实现钻削过程钻头磨损状态的智能识别.试验结果表明:该方法可有效实现功率谱特征提取,经训练的神经网络具有较高的识别精度和推广能力.

关 键 词:神经网络  钻头磨损  功率谱  小波分析  
文章编号:0255-8297(2004)04-0513-05
收稿时间:2003-07-21
修稿时间:2003-10-29

Artificial Neural Network Based Drill Wear Monitoring Using the Wavelet Decomposition of a Power Spectrum
ZHENG Jian-ming,LI Yan,XIAO Ji-ming,HONG Wei. Artificial Neural Network Based Drill Wear Monitoring Using the Wavelet Decomposition of a Power Spectrum[J]. Journal of Applied Sciences, 2004, 22(4): 513-517
Authors:ZHENG Jian-ming  LI Yan  XIAO Ji-ming  HONG Wei
Affiliation:Institute of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract:In the drilling process, the power spectrum of a drilling force is closely related to the drill wear. This relationship is widely applied in the monitoring of drill wear. But the problem of how to extract and identify the features of power spectrum have not been completely sloved. This paper achieves this through the multilayer decomposition of the power spectrum by using the wavelet transform and the extract of the low frequency decomposition coefficient as the envelope information of the power spectrum. Intelligent identification of the state of drill wear is achieved in the drilling process through fusing the wavelet decomposition coefficients of the power spectrum by using BP neural network. The experimental results show that the features of power spectrum can be extracted efficiently through this method, and the trained neural networks have high identification precision and the ability of extension.
Keywords:drill wear  power spectrum  wavelet analysis  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号