首页 | 本学科首页   官方微博 | 高级检索  
     

驾驶员转向特性分类与辨识方法对比研究
作者姓名:李刚  韩海兰  袁航  周致成
作者单位:;1.辽宁工业大学汽车与交通工程学院
基金项目:国家自然科学基金(51305190);辽宁省教育厅项目(L2013253)
摘    要:针对汽车驾驶员转向特性分类与辨识问题,基于CarSim仿真平台对研究方法进行了初步探索。设计了转向工况仿真试验,采集试验数据,根据车辆最大横摆角速度,使用K-means聚类算法对驾驶员转向特性进行分类。在Matlab软件环境下分别采用学习向量量化(LVQ)神经网络、BP神经网络、支持向量机(SVM)建立驾驶员转向特性辨识模型,并对3种网络建立的辨识模型进行测试试验和比较。试验结果表明:3种辨识方法均具有较高的辨识精度,其中支持向量机方法在汽车驾驶员转向特性辨识方面具有一定的优势。

关 键 词:车辆工程  驾驶员  转向特性  CarSim仿真平台  分类  辨识模型
收稿时间:2015-05-09
修稿时间:2015-06-11
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号