首页 | 本学科首页   官方微博 | 高级检索  
     

基于DWT的图像分块压缩感知重构算法
引用本文:邓波,徐庆,崔金鸽,李必云. 基于DWT的图像分块压缩感知重构算法[J]. 吉首大学学报(自然科学版), 2016, 37(5): 27-31. DOI: 10.3969/j.cnki.jdxb.2016.05.007
作者姓名:邓波  徐庆  崔金鸽  李必云
作者单位:(吉首大学物理与机电工程学院,湖南 吉首 416000)
基金项目:湖南省教育厅科学研究项目(14C0920,14C0923);吉首大学校级课题资助项目(15JDY028,15JDY032)
摘    要:运用压缩感知理论对大尺寸图像进行重构耗时较长,观测矩阵要求的存储空间较大,且重构后的图像存在明显的块状效应.根据图像小波变换系数的特点,将图像分块思想与DWT变换相结合,提出了一种改进的基于DWT的图像分块压缩感知算法.将图像子块经DWT变换后,保留图像低频系数,只对高频系数进行观测.重构时采用正交匹配追踪算法(OMP)对高频系数进行恢复.Matlab仿真结果表明,新算法跟基于DCT分块压缩感知算法相比,重构图像的PSNR值提高了2~4 dB,重构时间明显减少,与基于二维离散余弦变换(DCT)的分块压缩感知算法相比,块效应有明显的改善,重构图像质量明显提高.

关 键 词:压缩感知  图像分块  采样率  峰值信噪比  

An Improved Image Blocking Compressed Sensing Algorithm Based on DWT
DENG Bo,XU Qing,CUI Jinge,LI Biyun. An Improved Image Blocking Compressed Sensing Algorithm Based on DWT[J]. Journal of Jishou University(Natural Science Edition), 2016, 37(5): 27-31. DOI: 10.3969/j.cnki.jdxb.2016.05.007
Authors:DENG Bo  XU Qing  CUI Jinge  LI Biyun
Affiliation:(College of Physics and Electromechanical Engineering,Jishou University,Jishou 416000,Hunan China)
Abstract:Reconstruction of full image of large size by applying compressed sensing theory requires a long period of time, the observation matrix of linear measurement requires large space,and there is obvious block effect in the reconstructed image.According to the characteristics of the wavelet transformation coefficients of the image,the image block is combined with the DWT transformation,and an improved DWT based image compressed algorithm is proposed.After the DWT transformation,the low frequency coefficients of each image block are preserved,and only the high frequency coefficients are observed.The high frequency coefficients are recovered by the orthogonal matching pursuit algorithm (OMP).Matlab simulation experiment shows that, compared with the non-block compressed sensing algorithm, the algorithm proposed increases the PSNR value of the reconstructed image by 2~4 dB and decreases the reconstructing time significantly; and compared with the two-dimensional discrete cosine transformation (DCT) block compressed sensing algorithm,this algorithm decreases the block effect and improves reconstruction quality significantly.
Keywords:compressed sensing   image blocking   sampling rate   peak signal to noise ratio
本文献已被 CNKI 等数据库收录!
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号