首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF函数状态离散化的激励学习
引用本文:田建军,唐中勇. 基于RBF函数状态离散化的激励学习[J]. 太原师范学院学报(自然科学版), 2006, 5(3): 50-53
作者姓名:田建军  唐中勇
作者单位:1. 湖南公安高等专科学校,计算机系,湖南,长沙,410138
2. 长沙理工大学,计算机通讯工程学院,湖南,长沙,410076
摘    要:介绍了激励学习和两类学习算法:Q学习和SARSA学习,提出一类基于RBF函数的特征状态离散化方法,并对该方法进行了初步的实验比较.

关 键 词:激励学习  特征状态  状态离散化  RBF函数
文章编号:1672-2027(2006)03-0050-04
收稿时间:2006-03-09
修稿时间:2006-03-09

The State Discretization Based on RBF Function for the Reinforcement Learning
Tian Jianjun,Tang Zhongyong. The State Discretization Based on RBF Function for the Reinforcement Learning[J]. Journal of Taiyuan Normal University:Natural Science Edition, 2006, 5(3): 50-53
Authors:Tian Jianjun  Tang Zhongyong
Affiliation:1. Department of Computer Science,Hunan Public Security College,Changsha 410138; 2. Department of Computer and Communication,Changsha University of Science and Technology,Changsha 410076,China
Abstract:Reinforcement Learning and two classes of learning algorithms is introduced. A class of the state discretization based on RBF function for the Reinforcement Learning is proposed and preliminary empirical results are presented to compare the performance of the new method.
Keywords:reinforcement learning    feature state    sate discretization    RBF function
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号