首页 | 本学科首页   官方微博 | 高级检索  
     

基于自监督学习的交通数据补全算法
作者姓名:周楚昊  林培群  闫明月
作者单位:华南理工大学 土木与交通学院,广东 广州 510640;交通运输部路网监测与应急处置中心,北京 100088
基金项目:国家自然科学基金资助项目(52072130);广东省自然科学基金资助项目(2020A1515010349);华南理工大学中央高校基本科研业务费专项资金资助项目(2020ZYGXZR085)
摘    要:区域高速公路网收费站数量众多,每日产生海量收费数据,但由于设备、网络等因素,部分站点数据传输存在延迟现象,在此情况下已传输的数据往往不能满足实时流量预测的要求。为了实现实时交通数据补全和动态交通流量预测,文中首先提出了一种基于自监督学习的用于高速公路交通流量数据缺失补全的方法,该方法采用了基于注意力机制的时间序列模型(Seq2Seq-Att);然后使用自监督学习方式对模型进行训练;最后,以广东省高速公路网的80个收费站为例,验证方法的可靠性。结果表明:文中的数据补全方法能够灵活捕捉交通数据中的缺失情况,并根据数据自身的内在关联性,给出合理的补全值;该方法总体优于其他方法,且在不同缺失率下都有较好表现,总体MAPE约为17.7%、WMAPE为12.8%;在高缺失率情况下,该方法相比于其他补全方法有明显的优势。交通量预测结果表明,使用该方法补全的数据进行交通流预测的预测精度接近使用完整数据的情况。

关 键 词:数据补全  自监督学习  交通流预测  机器学习  高速公路
收稿时间:2022-04-27
本文献已被 万方数据 等数据库收录!
点击此处可从《华南理工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华南理工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号