首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pertussis toxin reverses adenosine inhibition of neuronal glutamate release
Authors:A C Dolphin  S A Prestwich
Abstract:Adenosine and its analogues are potent inhibitors of synaptic activity in the central and peripheral nervous system. In the central nervous system (CNS), this appears to arise primarily by inhibition of presynaptic release of transmitters, including glutamate, which is possibly the major excitatory transmitter in the brain. In addition, postsynaptic effects of adenosine have been reported which would also serve to reduce neurotransmission. The mechanism by which adenosine inhibits CNS neurotransmission is unknown, although it appears to exert its effect via an A1 receptor which in some systems is negatively coupled to adenylate cyclase. In an attempt to elucidate the mechanism of inhibition, we have examined the effect of pertussis toxin (PTX) on the ability of the stable adenosine analogue (-)phenylisopropyladenosine (PIA) to inhibit glutamate release from cerebellar neurones maintained in primary culture. PTX, by ADP-ribosylating the nucleotide-binding protein Ni, prevents coupling of inhibitory receptors such as the A1 receptor to adenylate cyclase. As reported here, we found that PTX, as well as preventing inhibition of adenylate cyclase by PIA, also converts the PIA-induced inhibition of glutamate release to a stimulation. Our results suggest strongly that purinergic inhibitory modulation of transmitter release occurs by inhibition of adenylate cyclase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号