首页 | 本学科首页   官方微博 | 高级检索  
     

基于测试分类精度的多分类器融合方法
引用本文:陈嶷瑛,孟庆新,刘智国. 基于测试分类精度的多分类器融合方法[J]. 佳木斯大学学报, 2006, 24(1): 75-77
作者姓名:陈嶷瑛  孟庆新  刘智国
作者单位:中国矿业大学(北京校区)资源与安全工程学院,北京,100083;石家庄经济学院信息工程学院,河北,石家庄,050031;富锦电信公司,黑龙江,富锦,156100;石家庄学院计算机系,河北,石家庄,050801
摘    要:本文分析了影响分类器精度的因素,并提出了三种基于在测试例集上分类表现效果的多分类器融合方法.这三种方法的基本思想是:当使用多个分类器对未标注文本进行分类时,最终输出在测试例集上表现最好的那个分类器的结果.实验结果表明,这三种融合方法从一定程度上提高了分类器精度.

关 键 词:文本分类  分类器融合  分类器
文章编号:1008-1402(2006)01-0075-03
收稿时间:2005-08-26
修稿时间:2005-08-26

Combing Multi- classifier Based on Their Accuracy on Test Corpus
CHEN Yi-ying,MENG Qing-xin,LIU Zhi-guo. Combing Multi- classifier Based on Their Accuracy on Test Corpus[J]. Journal of Jiamusi University(Natural Science Edition), 2006, 24(1): 75-77
Authors:CHEN Yi-ying  MENG Qing-xin  LIU Zhi-guo
Affiliation:1.School of resource and Safety Engineering,China University of Mining of Technology,Beijing 10083,China;2.School of Information Engineer,Shijiazhuang University of Economics,Shijiazhuang 050031,China;3.Fujin Telecommunication Corporatin,Fujin 156100,China;4.Dept. of Computer,Shijiazhuang College,Shijiazhuang 050801,China
Abstract:This paper analyzes the factors affecting the accuracy of classifier,and designs three methods combining multi-classifier based on their performance on test corpus.The main idea of our designation is that we output the result of the classifier which have higher F1,precision,or recall when we use multi-classifier to classify unlabeled text.Our experimental results show that our combining method can improve the effect of classifier in some degree.
Keywords:text classification  combining multi-classifier  classifiers
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号