Light-driven DNA repair by photolyases |
| |
Authors: | L. O. Essen T. Klar |
| |
Affiliation: | (1) Department of Chemistry, Philipps University, Hans-Meerwein-Strasse, 35032 Marburg, Germany |
| |
Abstract: | ![]() DNA photolyases are highly efficient light-driven DNA repair enzymes which revert the genomedamaging effects caused by ultraviolet (UV) radiation. These enzymes occur in almost all living organisms exposed to sunlight, the only exception being placental mammals like humans and mice. Their catalytic mechanism employs the light-driven injection of an electron onto the DNA lesion to trigger the cleavage of cyclobutane- pyrimidine dimers or 6-4 photoproducts inside duplex DNA. Spectroscopic and structural analysis has recently yielded a concise view of how photolyases recognize these DNA lesions involving two neighboring bases, catalyze the repair reaction within a nanosecond and still achieve quantum efficiencies of close to one. Apart from these mechanistic aspects, the potential of DNA photolyases for the generation of highly UV-resistant organisms, or for skin cancer prevention by ectopical application is increasingly recognized. Received 29 September 2005; received after revision 30 November 2005; accepted 15 February 2006 |
| |
Keywords: | DNA-photolyase cyclobutane-pyrimidine dimer (CPD) base flipping DNA repair electron transfer blue-light reactions ultraviolet radiation skin cancer |
本文献已被 PubMed SpringerLink 等数据库收录! |
|