首页 | 本学科首页   官方微博 | 高级检索  
     

基于双树复数小波四元数卷积网络的Copy-move盲取证算法
引用本文:李策,李兰,靳山岗,高伟哲,许大有. 基于双树复数小波四元数卷积网络的Copy-move盲取证算法[J]. 兰州理工大学学报, 2021, 47(2): 87-96
作者姓名:李策  李兰  靳山岗  高伟哲  许大有
作者单位:兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050
基金项目:国家自然科学基金(61866022),甘肃省基础研究创新群体项目(1506RJIA031)
摘    要:随着图像编辑软件的普及与完善,使得人们通过Copy-move操作便可伪造图像,而现有的Copy-move盲取证算法很难提取到彩色图像的一致性特征,且结果依赖于手动调节参数,难以定位到准确的篡改区域.为此,利用四元数卷积网络提取彩色图像空间一致性信息和双树复数小波提取图像局部信息的优势,提出了一种基于双树复数小波四元数卷...

关 键 词:Copy-move盲取证  四元数卷积  双树复数小波
收稿时间:2020-01-09

Copy-move image blind forgery algorithm based on quaternion convolutional neural networks with dual-tree complex wavelet
LI Ce,LI Lan,JIN Shan-gang,GAO Wei-zhe,XU Da-you. Copy-move image blind forgery algorithm based on quaternion convolutional neural networks with dual-tree complex wavelet[J]. Journal of Lanzhou University of Technology, 2021, 47(2): 87-96
Authors:LI Ce  LI Lan  JIN Shan-gang  GAO Wei-zhe  XU Da-you
Affiliation:College of Electrical and Information Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China
Abstract:With the popularity of image editing software, people can forge images by Copy-move. However, existing Copy-move blind forensics algorithms are difficult to extract consistency features of color images with results depending on manually adjusting parameters, which leads to low locate accurate. Therefore, using the advantage of quaternion convolutional network on extracting spatial consistency of color images and double-tree complex wavelet on extracting image local features, Copy-move blind forensics algorithm based on quaternion convolutional network with double-tree complex wavelet is proposed. Firstly, images represented as quaternions were input to quaternion convolutional network to extract consistency features of color images, and the high-frequency subbands of double-tree complex wavelet transform were connected with feature maps of the convolutional network to learn local features. Next, similarity scores in feature vectors are calculated. Then, convolutional network is extracted features with higher scores to locate similar areas, which solves the problem of adjusting parameters during matching. Besides, an auxiliary branch is constructed to locate the tampered areas. Finally, similar and tampered areas are fused to distinguish copy and paste. The subjective and objective experiments on CoMoFoD and CASIA CMFD datasets show that the proposed algorithm improves the performance of Copy-move blind forgery.
Keywords:Copy-move blind forgery  quaternion convolutional neural networks  the dual-tree complex wavelet  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《兰州理工大学学报》浏览原始摘要信息
点击此处可从《兰州理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号