摘 要: | 为了提高支持向量机(SVM)分类效率,大幅减少以高分辨率距离像(HRRP)功率谱为特征的支持向量机目标识别分类器的计算量,采用自编码神经网络深度学习方法,实现高维、非线性HRRP功率谱的数据降维。在此基础上,提出了Autoencoder-SVM模型,综合利用自编码神经网络的特征提取能力和SVM的分类能力。仿真结果显示,在HRRP功率谱降维方面,自编码神经网络的降维效果远好于核主成分分析和等距映射算法,其降维结果对SVM分类结果影响甚微,但大幅缩短了SVM的计算时间;同时,在隐层节点数相同的情况下,随着隐含层数的增加或者深度的增加,自编码神经网络数据降维或特征提取效果更好。
|