首页 | 本学科首页   官方微博 | 高级检索  
     

改进凸包的贝叶斯模型显著性检测算法
作者姓名:李春华  秦云凡  刘玉坤
作者单位:河北科技大学信息科学与工程学院,河北石家庄 050018;河北科技大学信息科学与工程学院,河北石家庄 050018;河北科技大学信息科学与工程学院,河北石家庄 050018
基金项目:河北省人力资源和社会保障厅引进留学人员资助项目(C201811)
摘    要:针对传统贝叶斯模型算法对图像显著区域检测精度需要进一步提高的问题,提出一种改进凸包的贝叶斯模型显著性检测算法。首先,利用流行排序算法对图像进行前景提取,提取的前景区域作为贝叶斯模型的先验概率;其次,利用颜色增强的Harris角点检测算法检测图像在RGB,HSV,CIELab 3个颜色空间中的特征点,分别构造RGB,HSV,CIELab空间的凸包,求取3个颜色空间下的凸包的交集;再次,通过贝叶斯模型根据先验概率、凸包与颜色直方图结合得到的观测似然概率计算获得显著性区域图;最后,将新算法在两大公开数据集MSRA和ECSSD中进行测试。结果表明,新算法能够有效抑制背景噪声,完整检出显著区域,F-measure值在MSRA和ECSSD数据库中的测试结果分别为0.87和0.71,准确率-召回率曲线在复杂图像数据库高于传统经典算法。新算法改进了传统经典算法的检测效果,进一步提高了显著图检测的准确性。

关 键 词:图像处理  显著性检测  凸包  超像素  流行排序  贝叶斯模型
收稿时间:2020-09-30
修稿时间:2020-11-26
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号