首页 | 本学科首页   官方微博 | 高级检索  
     

基于曲线波的超声图像分割
引用本文:曹琳,云挺,舒华忠. 基于曲线波的超声图像分割[J]. 东南大学学报(自然科学版), 2012, 42(3): 419-423. DOI: 10.3969/j.issn.1001-0505.2012.03.005
作者姓名:曹琳  云挺  舒华忠
作者单位:1.东南大学影像科学与技术实验室,南京,210096;2.东南大学影像科学与技术实验室,南京,210096;3.东南大学影像科学与技术实验室,南京,210096
基金项目:国家重点基础研究发展计划(973计划)资助项目(2011CB707904);国家自然科学基金资助项目(60911130370);教育部博士点基金资助项目(20110092110023)
摘    要:为了提高前列腺超声图像分割的准确率,提出一种基于曲线波的半监督超声图像自动分割方法.首先,采用对微小波动敏感度高的Riemann-Liouville (RL)分数阶微分算子,突出模糊边界并增强超声图像的纹理;其次,运用曲线波变换对超声图像进行频域中的分解,获得不同子带分量以表达超声图像特征;然后,基于Adaboost的分类算法识别出超声图像中的病灶区和非病灶区;最后,采用中值滤波和腐蚀的方法使病灶区域边缘完整、平滑.实验表明,与运用共生矩阵及二进小波作纹理分析的分割结果比较,所提出的方法在准确率上有了很大的改进,分割超声图像效果更佳.

关 键 词:Riemann-Liouville分数阶微分  曲线波变换  Adaboost  超声图像  分割

Ultrasound image segmentation based on curvelet
Cao Lin , Yun Ting , Shu Huazhong. Ultrasound image segmentation based on curvelet[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(3): 419-423. DOI: 10.3969/j.issn.1001-0505.2012.03.005
Authors:Cao Lin    Yun Ting    Shu Huazhong
Affiliation:Cao Lin Yun Ting Shu Huazhong(Laboratory of Image Science and Technology,Southeast University,Nanjing 210096,China)
Abstract:In order to improve the accuracy of prostate ultrasound image segmentation,a semi-supervised automatic segmentation method based on curvelet transform is proposed.First,the Riemann-Liouville(RL) fractional differential operator which is sensitive to the tiny fluctuations is used to enhance the fuzzy boundary and image texture.Secondly,the image is transformed into curvelet domain and different subbands are obtained to represent the ultrasound image characteristics.Thirdly,the Adaboost algorithm is applied to identify the lesion and non-lesion regions in the ultrasound image.Finally,the median filter and the erosion operator are used to smooth the lesion regions’ edge.Experiments show that the proposed method outperforms the approaches based on co-occurrence matrix and dyadic wavelet in terms of accuracy.
Keywords:Riemann-Liouville fractional differential  curvelet transform  Adaboost  ultrasound image  segmentation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号