首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进调节变量主成分权重的广义灰靶决策模型研究
引用本文:蔡佳佳,方志耕,张秦,刘思峰. 基于改进调节变量主成分权重的广义灰靶决策模型研究[J]. 系统工程理论与实践, 1981, 40(11): 2991-2999. DOI: 10.12011/1000-6788-2019-0869-09
作者姓名:蔡佳佳  方志耕  张秦  刘思峰
作者单位:1. 南京航空航天大学 经济与管理学院, 南京 211100;2. 南京航空航天大学 灰色系统研究所, 南京 211100
基金项目:国家自然科学基金面上项目(71671091);中央高校基本科研业务费专项基金(NC2019003,NP2019104)
摘    要:在现实生活中,由于信息的不完全性和认知的不充分性,多数决策对象具有强烈的多源不确定性特点,存在多种不确定性因素共存的现象.针对目前灰靶决策模型未充分考虑决策对象多种不确定性因素共存的局限,以及确定决策指标权重时未深入探讨指标间相关性的问题,首先引入广义灰数的表征形式对指标属性值进行统一表征,并提出广义灰数的一致效果测度模型,然后根据传统主成分分析法确定权重时所存在的二次加权放大问题,揭示指标差异性与相关性对二次加权的影响,通过改进调节变量对原始主成分权重进行修正,接着将传统的灰靶决策模型扩展为广义灰数形式,构建基于加权欧式距离的广义灰靶靶心距模型,并据此建立基于改进调节变量主成分权重的广义灰靶决策模型.最后通过案例研究,验证本文模型的合理性和可行性.

关 键 词:多源不确定性  广义灰数  广义灰靶决策  主成分分析  改进调节变量  
收稿时间:2019-04-29

Research on generalized grey target decision model based on principal component weight of improved regulating variables
CAI Jiajia,FANG Zhigeng,ZHANG Qin,LIU Sifeng. Research on generalized grey target decision model based on principal component weight of improved regulating variables[J]. Systems Engineering —Theory & Practice, 1981, 40(11): 2991-2999. DOI: 10.12011/1000-6788-2019-0869-09
Authors:CAI Jiajia  FANG Zhigeng  ZHANG Qin  LIU Sifeng
Affiliation:1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China;2. Institute of Grey System, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
Abstract:Due to the incompleteness of information and the insufficiency of cognition, most decision-makings have strong multi-source and uncertainty characteristics, which causes many uncertain factors coexist. At present, the grey target decision model doesn't adequately consider the limitations of multiple uncertain factors' coexistence in decision-making objects, and doesn't deeply discuss the correlation between indicators when determining the weight of decision indicators. To solve these problems, firstly, we apply generalized grey number to simultaneously characterize multiple attribute data of indicators. At the same time, we define a consistent effect measure model for generalized gray numbers. Then, reveal the impact of indicator differences and correlations on secondary weighting, since traditional principal component analysis (PCA) has a problem to absorb twice information. And correct the original PCA weights by improving the regulating variables. Next, construct the off-target distance model based on weighted Euclidean distance with extending to a generalized gray number form. Therefore, a generalized grey target decision model based on principal component weight of improved regulating variables is proposed. Finally, through a case study, we prove the rationality and feasibility of the model.
Keywords:multi-source uncertainty  generalized standard interval grey number  generalized grey target decision making  PCA  improved regulating variables  
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号