首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的中国信贷规模稳健预测
引用本文:张瀛,洪珍玉,江巍. 基于RBF网络的中国信贷规模稳健预测[J]. 系统工程理论与实践, 2014, 34(12): 3022-3033. DOI: 10.12011/1000-6788(2014)12-3022
作者姓名:张瀛  洪珍玉  江巍
作者单位:1. 华东师范大学 金融与统计学院, 上海 200241;2. 复旦大学 经济学院, 上海 200433
基金项目:国家自然科学基金面上项目(71173043);上海市教育委员会科研创新项目(11ZS09)
摘    要:将M-估计稳健损失函数与基于统计贡献度的动态确定核函数方法相结合, 提出一种有效的非参数RBF预测模型, 该方法克服了稳健性缺失问题, 在估计参数的同时动态确定最佳网络结构, 并且在学习中自动消除噪声和异常点的影响, 加快了网络的学习和收敛速度. 利用中国月度信贷数据进行实证分析表明, 本文模型与基准模型相比具有最好的预测稳健性和准确性, 对于提高货币政策有效性和前瞻性具有很好的应用价值.

关 键 词:统计贡献度  M-估计  RBF网络  包含检验  
收稿时间:2013-05-02

Chinese credit scale prediction using M-estimator based robust radial basis function neural networks
ZHANG Ying,HONG Zhen-yu,JIANG Wei. Chinese credit scale prediction using M-estimator based robust radial basis function neural networks[J]. Systems Engineering —Theory & Practice, 2014, 34(12): 3022-3033. DOI: 10.12011/1000-6788(2014)12-3022
Authors:ZHANG Ying  HONG Zhen-yu  JIANG Wei
Affiliation:1. School of Finance and Statistics, East China Normal University, Shanghai 200241, China;2. School of Economics,Fudan University, Shanghai 200433, China
Abstract:An M-estimator based robust radial basis function (RBF) learning algorithm with growing and pruning techniques using the concept of statistical contribution was proposed. This method not only eliminates the influence of noise and outliers, but also dynamically adjusts the number of neurons to approach an appropriate size of the network in estimating the parameters at the same time, and so improves the speeds of learning and convergence. Compared with SARIMA and SVR approaches based on empirical RMB monthly loan data series in China, the proposed method has the strongest forecast ability among all methods, and has an important value in applications to improve the effectiveness and perspectiveness of the monetary policy.
Keywords:statistical contribution  M-estimator  radial basis function (RBF)  encompassing test  
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号