首页 | 本学科首页   官方微博 | 高级检索  
     

基于轻量化卷积神经网络的改进模型与验证
引用本文:李润龙,王运圣,徐识溥,刘勇. 基于轻量化卷积神经网络的改进模型与验证[J]. 科学技术与工程, 2020, 20(28): 11653-11658
作者姓名:李润龙  王运圣  徐识溥  刘勇
作者单位:上海应用技术大学轨道交通学院,上海201418;上海市农业科学院农业科技信息研究所,上海201403;上海数字农业工程技术研究中心,上海201403;上海市农业科学院农业科技信息研究所,上海201403;上海数字农业工程技术研究中心,上海201403;同济大学软件学院,上海201804
基金项目:上海市农业科学院卓越团队建设项目 ; 上海市农委科技攻关项目
摘    要:
卷积神经网络随着深度和结果复杂度的不断增加,其参数量和计算量大大制约了它的应用场景,本文在SueezeNet网络结构基础上引用分组卷积并采用Channel-shuffel来解决分组卷积后的信息不流通问题。以减少原有网络结构的的参数量提高网络运行效率。在ORL数据集的验证表现也表明,在网络参数减少的情况下分类精度和收敛效率并不会有降低甚至略有提高。可以体现分组卷积在结构轻量化上的有效性。

关 键 词:卷积神经网络  参数量  轻量化  Channel-shuffel
收稿时间:2019-11-13
修稿时间:2020-06-24

A new module based on light-weight convolutional neural network
LiRunlong,XuShipu,LiuYong. A new module based on light-weight convolutional neural network[J]. Science Technology and Engineering, 2020, 20(28): 11653-11658
Authors:LiRunlong  XuShipu  LiuYong
Affiliation:Shanghai Institute of Technology;Information Research Institute of Science and Technology
Abstract:
In order to reduce the parameters of the original network structure and improve the efficiency of network operation. With the depth and complexity of the Convolutional Neural Network continuously increasing, its application scenarios are greatly restricted by its parameters and calculations. In this paper, the problem of information circulation with packet convolution is solved based on the SueezeNet network structure, packet convolution and Channel-shuffel. According to verification performance on the ORL data set, The results show that classification accuracy and convergence efficiency will not be reduced or even slightly improved with the network parameters reduced.It is concluded that the effectiveness of packet convolution in lightening the structure.
Keywords:convolutional neural network channel-shuffel parameters lightening the structure
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号