摘 要: | 为了防止路上行人摔倒不能及时救治,危及行人安全问题,提出了一种改进YOLOv5的行人摔倒检测算法YOLOv5-CBAM-WBF。首先,通过改进马赛克(Mosaic)算法来丰富数据集并缩短训练时长;其次,融入卷积注意力机制模块(Convolutional block attention module,CBAM),加强对检测目标的关注,以提升算法的特征提取能力;最后,提出了一种新的加权盒函数Weighted boxes fusion(WBF)方法,来对组合模型进行预测,该方法显著提高了组合预测矩形的质量。和原始YOLOv5算法进行比较,YOLOv5-CBAM-WBF算法的精确率、召回率以及平均精度分别提升了3.2%、2%和3.9%,表明该改进算法对于行人摔倒检测效果有了显著提升。
|