首页 | 本学科首页   官方微博 | 高级检索  
     

用两项谐波法求解强非线性Duffing方程
引用本文:李银山,张善元,董青田,曹俊灵. 用两项谐波法求解强非线性Duffing方程[J]. 太原理工大学学报, 2005, 36(6): 690-693
作者姓名:李银山  张善元  董青田  曹俊灵
作者单位:1. 河北工业大学,力学系,天津,300130
2. 太原理工大学,应用力学研究所,山西,太原,030024
基金项目:国家自然科学基金资助项目(10472076),河北省重点学科车辆工程资助项目,山西省自然科学基金资助项目(20001007)
摘    要:
提出了一类强非线性动力系统的两项谐波法。采用Ritz-Galerkin法,将描述动力系统的二阶常微分方程化为以频率、振幅为变量的非线性代数方程组;考虑初始条件补充约束方程,构成频率、振幅为变量的封闭非线性代数方程组。利用Maple程序可以方便地求解。分析了三种标准类型的Duffing方程,实例表明,两项谐波法方法简单,具有较高的精度。两项谐波法将谐波平衡法与等效线性化方法相结合,克服了二者的缺点吸取了二者的优点,取较少的谐波数目就可以达到比较高的精度。

关 键 词:强非线性  Duffing方程  两项谐波法  初始条件约束方程  Maple
文章编号:1007-9432(2005)06-0690-04
收稿时间:2005-09-10
修稿时间:2005-09-10

Two Harmonics Method for Strongly Nonlinear Duffing Equation
LI Yin-shan,ZHANG Shan-yuan,DONG Qing-tian,CAO Jun-ling. Two Harmonics Method for Strongly Nonlinear Duffing Equation[J]. Journal of Taiyuan University of Technology, 2005, 36(6): 690-693
Authors:LI Yin-shan  ZHANG Shan-yuan  DONG Qing-tian  CAO Jun-ling
Affiliation:1. Department of Mechanics, Hebei University of Technology, Tianjin 300130,China; 2. Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024 ,China
Abstract:
Two harmonics method is presented for strongly nonlinear dynamic-system.In a periodic oscillation,the periodic solutions can be expressed in the form of basic harmonics and bifurcate harmonics.Thus,an oscillation system which is described as a second order ordinary differential equation,can be expressed as a set of non-linear algebraic equations with a frequency and amplitudes as the independent variables using Ritz-Galerkin's method.Considering binding equation of initial conditions,they constitutes a complete set of non-linear algebraic equations with a frequency and amplitudes as the independent variables.Two examples are given by two harmonics method.In example one,the results are compared with analytic method.In example two,the results are compared with the numerical integration method.The examples are given at end of this paper.In example one,the phase trajectories of Duffing equation are computed for a hardening spring,a softening spring,and Ueda genre.The result agrees very well with the numerical integration method.
Keywords:strongly nonlinear  Duffing equation  two harmonics method  binding equation of initial conditions  Maple
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号