首页 | 本学科首页   官方微博 | 高级检索  
     

面向数控机床设计知识图谱构建的实体识别
作者姓名:刘浩  张建业  吕张成  陈哲钥
作者单位:天津工业大学机械工程学院
基金项目:国家科技重大专项子项目(2019ZX04005-001-014)
摘    要:为解决数控(computer numerical control, CNC)机床设计知识图谱构建过程中关键实体的抽取问题,制定了数控机床领域知识分类标准和标注策略,构建了领域数据集,并提出了一种基于RoBERTa(robustly optimized BERT pretraining approach)的数控机床设计知识实体识别方法。首先,利用数控机床领域数据集对RoBERTa模型进行微调,再利用RoBERTa对文本编码,生成向量表示;其次,采用双向长短期记忆(bidirectional long short-term memory, BiLSTM)网络提取向量特征;最后,利用条件随机场(conditional random field, CRF)推理出最优结果,进而为实体打上标签。实验结果表明:模型在数据集上的F1值为86.139%;对多数关键实体的F1值大于85%;相比其他模型提升2%~18%。可见该方法在数控机床设计知识实体识别中具有明显优势,能够识别机床设计知识文本包含的关键实体,为数控机床设计知识图谱构建提供了数据基础。

关 键 词:数控机床  设计  实体识别  知识图谱
收稿时间:2022-07-12
修稿时间:2022-11-08
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号