首页 | 本学科首页   官方微博 | 高级检索  
     

光纤陀螺漂移误差的T-S模糊建模补偿算法
引用本文:刘宇,路永乐,曾燎燎,李东福,黎蕾蕾,潘英俊. 光纤陀螺漂移误差的T-S模糊建模补偿算法[J]. 重庆大学学报(自然科学版), 2010, 33(12): 60-64
作者姓名:刘宇  路永乐  曾燎燎  李东福  黎蕾蕾  潘英俊
作者单位:重庆邮电大学,光纤通信技术重点实验室,重庆400065;重庆大学,光电技术及系统教育部开放实验室,重庆400044
基金项目:国家自然科学基金资助项目)10926072);重庆市科委自然科学基金资助项目)CSTG2007BB2448)
摘    要:
基于G-K聚类算法辨识T-S模糊模型前件参数理论,并采用最小二乘法辨识T-S模糊模型后件参数的误差模型,研究了一种光纤陀螺温度漂移误差的非线性补偿算法。在建立该模型的基础上对光纤陀螺零位输出进行了补偿,计算结果表明采用该种方法能够在不完全了解陀螺误差机理的情况下对其进行有效的补偿。其绝对误差与未补偿相比较降低了99%,同线性拟合补偿相比降低了96%和神经网络补偿比较降低了10%,其误差方差分别减少99%,98%,20%。

关 键 词:光纤陀螺(FOG)  零位漂移  T-S模糊模型  误差补偿
收稿时间:2010-07-19

Drift error compensation algorithm for fiber optic gyro based on T-S fuzzy modeling
LIU Yu,LU Yong-le,ZENG Liao-Liao,LI Dong-fu,LI Lei-lei and PAN Ying-jun. Drift error compensation algorithm for fiber optic gyro based on T-S fuzzy modeling[J]. Journal of Chongqing University(Natural Science Edition), 2010, 33(12): 60-64
Authors:LIU Yu  LU Yong-le  ZENG Liao-Liao  LI Dong-fu  LI Lei-lei  PAN Ying-jun
Affiliation:Optical Communication Technology Institute of Chongqing University of Posts andTelecommunications, Chongqing 400065, P.R. China;Optical Communication Technology Institute of Chongqing University of Posts andTelecommunications, Chongqing 400065, P.R. China;Optical Communication Technology Institute of Chongqing University of Posts andTelecommunications, Chongqing 400065, P.R. China;Optical Communication Technology Institute of Chongqing University of Posts andTelecommunications, Chongqing 400065, P.R. China;Key Laboratorg for Opto-ElectronicTechnology & System of MOE,Chongqing University, Chongqing 400044,P.R. China;Key Laboratorg for Opto-ElectronicTechnology & System of MOE,Chongqing University, Chongqing 400044,P.R. China
Abstract:
A drift error nonlinear compensation algorithm for Fiber Optic Gyro (FOG) is presented based on T-S fuzzy model with the antecedent parameters identified by G-K clustering algorithm and the error model of T-S fuzzy model with the consequent parameters identified by least square algorithm. The computed results show that this model can compensate the original data effectively, while the error principles of FOG do not need to be understood well. Comparing with the original data, compensation with linear fitting and compensation with neural network, the absolute error of the proposed model reduces by 99%, 96% and 10%, respectively. The error variance reduces by 99%, 98% and 20%, respectively. The results indicate that this proposed algorithm can be simply operated with high precision and easy to realize in engineering.
Keywords:FOG  zero drift  T-S fuzzy model  error compensation  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号