首页 | 本学科首页   官方微博 | 高级检索  
     

一类新的超记忆多步曲线搜索方法及其全局收敛性
引用本文:孙敏. 一类新的超记忆多步曲线搜索方法及其全局收敛性[J]. 青岛化工学院学报(自然科学版), 2008, 0(5): 464-466
作者姓名:孙敏
作者单位:枣庄学院数学与信息科学系,山东枣庄277160
摘    要:提出一种求解无约束最优化问题的超记忆多步曲线搜索方法,此方法具有如下特点:(1)每次迭代目标函数f(x)下降量更大;(2)充分利用前m步的迭代信息;(3)每次迭代同时确定下降方向和步长;(4)步长一致有正下界。在较弱的条件下,证明了此方法的收敛性。

关 键 词:无约束最优化  多步法  曲线搜索法  收敛性

A New Super-memory Multi-step Curve Search Method and its Global Convergence
SUN Min. A New Super-memory Multi-step Curve Search Method and its Global Convergence[J]. Journal of Qingdao Institute of Chemical Technology(Natural Science Edition), 2008, 0(5): 464-466
Authors:SUN Min
Affiliation:SUN Min (Department of Mathematics and Information Science, Zaozhuang University, Zaozhuang 277160,China)
Abstract:A new super-memory multi-step curve search method is proposed for unconstrained optimization in this paper, the following four properties are obtained: (1) the value of f(x) decreases more at each iteration; (2) it uses the previous m-step iterative information sufficiently; (3) the descent direction and the step-size are determined at the same time; (4) the step-sizes have a positive uniform bound from below. Under mild conditions, the convergence of the new method is proved.
Keywords:unconstrained optimization  multi-step method  curve search method  convergence.
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号