首页 | 本学科首页   官方微博 | 高级检索  
     

基于多小波的局部背景隐马尔可夫模型图像去噪
引用本文:张伟,;隋青美. 基于多小波的局部背景隐马尔可夫模型图像去噪[J]. 青岛化工学院学报(自然科学版), 2008, 0(6): 539-542
作者姓名:张伟,  隋青美
作者单位:[1]青岛科技大学自动化与电子工程学院,山东青岛266042; [2]山东大学控制科学与工程学院,山东济南250061
基金项目:山东省自然科学基金资助项目(Z2006G06).
摘    要:小波域局部背景隐马尔可夫模型(LCHMM)可获得尺度内的相关性和局部的统计特征,并且复杂度小,多小波分析在图像去噪方面有很好的性能。利用多小波分析和局部背景隐马尔可夫模型各自在图像去噪方面的优势,将两者结合起来,提出了一种基于多小波的局部背景隐马尔可夫模型(M—LCHMM)图像去噪算法。算法主要有两步:局部背景隐马尔可夫模型去噪处理和均值处理。该算法简单有效,仿真试验表明M—LCHMM的去噪效果优于目前许多已有的去噪算法。

关 键 词:多小波  局部背景隐马尔可夫模型  图像去噪  图像处理

Image Denoising Based on Multiple Wavelet and Local Contextual Hidden Markov Model
Affiliation:ZHANG Wei, SUI Qing-mei (1. College of Automation and Electronic Engineering, Qingdao University of Science and Technology 2. School of Control Science and Engineering, Shandong University, Ji' nan 250061, Qingdao 266042, China China)
Abstract:Wavelet-domain local contextual hidden Markov model (LCHMM) can exploit both the local statistics and the scale of relevance in a low computational complexity. Multiple wavelet representations have excellent performance in image denoising. In this paper, combining the multiple wavelet representations with the LCHMM and using their advantages in image denoising, a new algorithm is proposed, which is called M- LCHMM. This algorithm, which is simple and effective, has tWO major steps: local contextual hidden Markov model denoising of the wavelet coefficients and an averaging of the denoised images. Simulation results show that the proposed M-LCHMM can achieve the state-of-the-art image denoising performance in a low computational complexity.
Keywords:multiple wavelet  local contextual hidden Markov model  image denoising  image processing
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号