首页 | 本学科首页   官方微博 | 高级检索  
     

基于非负稀疏协作模型的目标跟踪算法
引用本文:陈思宝,苌江,罗斌. 基于非负稀疏协作模型的目标跟踪算法[J]. 安徽大学学报(自然科学版), 2017, 41(5). DOI: 10.3969/j.issn.1000-2162.2017.05.004
作者姓名:陈思宝  苌江  罗斌
作者单位:安徽大学计算机科学与技术学院,安徽合肥,230601;安徽大学计算机科学与技术学院,安徽合肥,230601;安徽大学计算机科学与技术学院,安徽合肥,230601
基金项目:国家自然科学基金资助项目
摘    要:
目标跟踪是计算机视觉研究领域中一个最基本的问题.为解决在复杂场景下目标跟踪效果不佳的问题,作者搭建了一个基于非负稀疏的协作模型,该模型将非负稀疏表示的产生式模型与全局模板判别式模型相结合,并提出了基于非负稀疏协作模型的目标跟踪算法.首先对每一帧图像使用粒子滤波得到若干个候选框,然后再利用非负稀疏协作模型对每一个候选跟踪框进行评分,根据得分最高判为是跟踪目标的候选框.在多个视频序列上的实验结果表明,所提出的方法可以有效地提高目标跟踪的性能.

关 键 词:目标跟踪  非负稀疏表示  稀疏协作模型  产生式模型  判别式分类器

Object tracking via non-negative sparsity-based collaborative model
CHEN Sibao,CHANG Jiang,LUO Bin. Object tracking via non-negative sparsity-based collaborative model[J]. Journal of Anhui University(Natural Sciences), 2017, 41(5). DOI: 10.3969/j.issn.1000-2162.2017.05.004
Authors:CHEN Sibao  CHANG Jiang  LUO Bin
Abstract:
One of the fundamental topics of computer vision is object tracking.The performance of tracking is poor in complex environment.In this paper,we established a collaborative model which combines generative model using non-negative sparse representations with discriminative classifier based on holistic templates,and proposed a tracking algorithm via non-negative sparsity-based collaborative model.In each frame,a few candidates were first obtained by using particle filter.Then a score was given to each candidate by the proposed tracking model.In the end,the candidate with the highest score was taken as the tracking result.Experiments showed that the proposed algorithm could effectively improve the performance of object tracking.
Keywords:object tracking  non-negative sparse representation  sparsity-based collaborative model  generative model  discriminative classifier
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号