摘 要: | 提出一种基于分解的、改进的多目标蚁群算法。该算法首先利用Tchebycheff聚合方法将整个Pareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用蚁群算法同时求解这些子问题。为使解集均匀分布在Pareto前沿,采用基于试探的聚类方法对解集聚类;依据解集的分布重置分解策略中的权重向量集,使其适配于特定的Pareto前沿;蚂蚁按照对应的权重距离被分组,同一组蚂蚁共享一个信息素矩阵,该矩阵容纳学习到Pareto前沿子区域的位置信息;每个蚂蚁求解一个子问题,每个蚂蚁拥有自己的启发式信息矩阵;每个蚂蚁拥有多个邻居,蚂蚁选取邻居中的最优解来更新当前解;蚂蚁依据小组信息素,当前解和启发式信息构建新的解。引入自适应变异算子,动态调整蚂蚁邻居的个数,提高算法的收敛速度和解的质量。将该算法与其他相关算法在标准的双旅行商问题进行性能对比,证明该算法有效。
|