首页 | 本学科首页   官方微博 | 高级检索  
     

钻孔应变观测数据的分形特征研究
引用本文:杨德贺,王秀英,申旭辉,许嵩,鲁恒新. 钻孔应变观测数据的分形特征研究[J]. 科学技术与工程, 2017, 17(34)
作者姓名:杨德贺  王秀英  申旭辉  许嵩  鲁恒新
作者单位:中国地震局地壳应力研究所地壳动力学重点实验室,中国地震局地壳应力研究所地壳动力学重点实验室,中国地震局地壳应力研究所地壳动力学重点实验室,中国地震局地壳应力研究所地壳动力学重点实验室,中国地震局地壳应力研究所地壳动力学重点实验室
基金项目:中国地震局地壳应力研究所中央级公益性科研院所基本科研业务专项资助项目(项目号ZDJ2015-10)
摘    要:形变观测数据是地震监测预报和地球科学研究重要数据源,其中环境干扰排除、地震震例等异常数据的检测是形变观测数据推广应用的关键内容。本文针对形变观测数据中的钻孔应变观测数据,通过计算绘制功率谱图,研究其Hurst指数与盒维数分形特征,实现对观测数据中地震事件等异常数据的检测。实验结果表明钻孔应变观测数据符合1/f分布,其具有长时间记忆的分形特征,Hurst指数与分形盒维数变化都凸显出了地震等异常数据。随着信噪比的下降,钻孔应变观测数据的Hurst指数呈现下降的趋势,其盒维数呈现增加的趋势,进一步证实了Hurst指数与分形盒维数之和为2的关系,而它们的变化较大,表明具有较弱的抗噪能力。本文的研究结果可为地震研究提供理论基础。

关 键 词:钻孔应变数据  分形特征  盒维数  Hurst指数  异常数据
收稿时间:2017-04-19
修稿时间:2017-06-22

Study on Fractal Geometry in Borehole Strain Observation Data
yangdehe,wangxiuying,shenxuhui,xusong and luhengxin. Study on Fractal Geometry in Borehole Strain Observation Data[J]. Science Technology and Engineering, 2017, 17(34)
Authors:yangdehe  wangxiuying  shenxuhui  xusong  luhengxin
Affiliation:Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration,Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration,Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration,Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration,Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration
Abstract:The deformation observation data is crucial in earthquake monitoring and forecasting and earth science. The detection of outlier data, such environmental interference and earthquake, is very important to apply those data to other field. In this paper, we study the Hurst exponent and the fractal box-dimension of the borehole strain data to detect the outlier data. The experiments indicate that the power spectrum of the borehole strain data resemble the 1/f distribution, which means the fractal geometry of the borehole strain data. Its Hurst exponent identify the characteristics of long time memory. The outlier data, such as earthquake, can be detected by Hurst exponent and fractal box-dimension. With the decrease of signal-to-noise ratio(SNR), the Hurst exponent is an decreasing trend, and the fractal box-dimension is an increasing trend, which further confirming the relationship between the Hurst exponent and the fractal box-dimension. However, these indexes change greatly, which indicates that they have poor anti-noise ability. Our results can provide the theoretical basis for seismic research.
Keywords:Borehole strain data  Fractal geometry  Fractal box-dimension  Hurst exponent  Outlier data
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号