首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的水轮机振源参数识别方法
引用本文:李守巨,刘迎曦,宋树川,等. 基于RBF神经网络的水轮机振源参数识别方法[J]. 大连理工大学学报, 2007, 47(1): 6-10
作者姓名:李守巨  刘迎曦  宋树川  
作者单位:大连理工大学,工业装备结构分析国家重点实验室,辽宁,大连,116024;丰满发电厂,吉林,吉林,132108
摘    要:在对水轮机进行力学建模和分析时,其振动荷载特性往往是未知的,但却是十分重要的.基于径向基函数(RBF)神经网络,提出了水轮机振动荷载参数识别方法.根据在丰满水电站现场观测的水轮机振动响应数据,识别出了水轮机在不同运行状态下的振动荷载参数,其中包括振动力的频率、相位差和幅值.利用人工神经网络具有解决参数识别反问题不适定性的能力,建立了水轮机系统响应与模型参数之间近似的非线性函数关系.现场实际应用结果表明,经过充分训练的神经网络具有较快的收敛能力和较高的预测精度.

关 键 词:振动荷载  参数识别  神经网络  系统响应  径向基函数
文章编号:1000-8608(2007)01-0006-05
修稿时间:2005-04-202006-09-10

Identification procedure of vibrating load parameters of hydraulic generator with RBF neural network
LI Shou-ju,LIU Ying-xi,SONG Shu-chuan,et al. Identification procedure of vibrating load parameters of hydraulic generator with RBF neural network[J]. Journal of Dalian University of Technology, 2007, 47(1): 6-10
Authors:LI Shou-ju  LIU Ying-xi  SONG Shu-chuan  et al
Affiliation:1. State Key Lab. of Struct. Anal. for Ind. Equip., Dallan Univ. of Technol., Dallan 116024, China; 2. Fengman Hydropower Plant, Jilin 132108, China
Abstract:Vibrating dynamic characteristics have been unknown but important in the modeling and mechanical analyses of large hydraulic generators.An identification algorithm for vibrating dynamic characterization by using RBF(radial basis function) artificial neural network is developed for multi-degree of freedom systems.By means of measured dynamic responses of the hydraulic generator at Fengman Hydropower Plant,the indentification algorithm identifies the loading parameters which include the main frequencies,phase differences and amplitudes of vibrating forces.The artificial neural network is used to tackle an ill-posed problem of the parameter identification and to approximate nonlinear function relationship between the vibration responses of the hydraulic generator and model parameters. It is demonstrated that a well-trained artificial neural network reveals an extremely fast convergence and a high degree of accuracy in the parameter identification of hydraulic generator vibration.
Keywords:vibrating loads   parameter identification   neural network   system response   radial basis function
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号