摘 要: | 设G是顶点集合为V(G)={v_(0i)|i=1,2,…,p}的简单图,n是正整数,称M_n(G)为G上的锥(或广义Mycielski图),如果V(M_n(G)={v_(01),v_(02),…,v_(0p);v_(11),v_(12),…,v_(1p);…v_(n1),v_(n2),…,v_(np),w}) E(M_n(G))=E(G)∪{v_(ij)v_((i 1)k)|v_(0j)v_(0k)∈E(G),1≤j,k≤p,i=0,1,…,n-1}∪{v_(nj)w|1≤j≤p}.在这篇文章里,我们讨论了完全图上的锥的$D(2)$-点可区别的正常边染色,并给出了相应色数.
|