摘 要: | 基于集合的粒子群优化算法(set-based particle swarm optimization,S-PSO) 主要用于解决离散域的组合优化问题。但S-PSO只考虑了当前粒子的最优对速度更新的影响,易陷入局部最优解。提出ES-PSO (enhanced S-PSO)算法,重新设计速度更新策略。在速度更新策略中加入了全局最优和邻域最优的影响,同时,修改权重系数,使粒子在更新时优先考虑服务时间较早的粒子,更加合理地安排了节点的服务顺序。使用ES-PSO算法求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW),提出了ES-PSO-VRPTW算法。实验结果表明,基于Solomon数据集,ES-PSO-VRPTW算法在最优路径数目(number of vehicle-route,NV)和总里程(total distance,TD)上的表现比S-PSO-VRPTW更加优越。将ES-PSO-VRPTW用于求解带时间窗的垃圾回收车辆运输问题,得到的路径数目NV和总里程TD相对于S-PSO-VRPTW以及传统的遗传算法(genetic algorithm,GA)和蚁群算法(ant colony optimization,ACO)均有大幅度降低。
|