首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进粒子群优化算法在车辆路径问题的应用研究
作者姓名:文展  唐康健  李文藻
作者单位:成都信息工程大学 通信工程学院,成都 610225
基金项目:四川省重大科技专项(2019ZDZX0005)
摘    要:基于集合的粒子群优化算法(set-based particle swarm optimization,S-PSO) 主要用于解决离散域的组合优化问题。但S-PSO只考虑了当前粒子的最优对速度更新的影响,易陷入局部最优解。提出ES-PSO (enhanced S-PSO)算法,重新设计速度更新策略。在速度更新策略中加入了全局最优和邻域最优的影响,同时,修改权重系数,使粒子在更新时优先考虑服务时间较早的粒子,更加合理地安排了节点的服务顺序。使用ES-PSO算法求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW),提出了ES-PSO-VRPTW算法。实验结果表明,基于Solomon数据集,ES-PSO-VRPTW算法在最优路径数目(number of vehicle-route,NV)和总里程(total distance,TD)上的表现比S-PSO-VRPTW更加优越。将ES-PSO-VRPTW用于求解带时间窗的垃圾回收车辆运输问题,得到的路径数目NV和总里程TD相对于S-PSO-VRPTW以及传统的遗传算法(genetic algorithm,GA)和蚁群算法(ant colony optimization,ACO)均有大幅度降低。

关 键 词:粒子群优化算法  时间窗  车辆路径优化
收稿时间:2020-06-28
修稿时间:2020-09-06
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号