首页 | 本学科首页   官方微博 | 高级检索  
     

联合多尺度块匹配的非局部均值去噪算法
作者姓名:陈浩宇  许光宇
作者单位:安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
基金项目:国家自然科学基金项目(61471004);安徽理工大学博士基金(ZX942);安徽理工大学研究生创新基金项目 (2022CX2125)
摘    要:
针对非局部均值(Non-Local Means,NLM)图像去噪算法易产生伪影与平滑细节的问题,提出一种联合多尺度图像块匹配的像素相似性测度,提高NLM算法去噪性能.首先,研究与分析了加权欧氏距离与欧氏距离两种相似性度量以及图像块尺寸设置对NLM算法的影响.其次,通过引入图像特征信息并利用K-means聚类方法将图像划分为平坦区域和包含边缘与纹理的结构区域,对每个类别中的像素点,联合两种尺度图像块匹配计算像素的平滑权重.最后,优化了算法的滤波参数.实验结果表明,提出的算法在噪声去除与细节保持方面明显优于经典的NLM算法,相比其他改进的NLM算法也有优势.

关 键 词:图像去噪  非局部均值  局部特征  多尺度块匹配
本文献已被 万方数据 等数据库收录!
点击此处可从《海南师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《海南师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号